algo.cpp 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/**
 * \file dnn/src/x86/pooling/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */
#include "src/x86/pooling/algo.h"
#include "megdnn/opr_param_defs.h"
#include "src/common/opr_delegate.h"
#include "src/common/utils.h"
#include "src/fallback/pooling/opr_impl.h"
#include "src/naive/handle.h"
#include "src/x86/handle.h"
#include "src/x86/pooling/do_max_pooling_3x3_s2x2_float_sse.h"
#include "src/x86/pooling/pooling_special_cases.h"
#include "src/x86/utils.h"

23 24
#include "src/x86/avx_helper.h"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
using namespace megdnn;
using namespace x86;

namespace {

#if MEGDNN_X86_WITH_MKL_DNN
template <dnnl::memory::format_tag format_tag, bool use_mkl_mem>
dnnl::memory tensor_to_mkl_memory(_megdnn_tensor_in src,
                                  const dnnl::engine& mkldnn_eng,
                                  dnnl::memory::data_type mkldnn_datatype) {
    megdnn_assert(format_tag == dnnl::memory::format_tag::nChw8c ||
                          format_tag == dnnl::memory::format_tag::nchw ||
                          format_tag == dnnl::memory::format_tag::nhwc,
                  "not support format");

    dnnl::memory::dims src_shape = {
            static_cast<long>(src.layout[0]), static_cast<long>(src.layout[1]),
            static_cast<long>(src.layout[2]), static_cast<long>(src.layout[3])};
    if (format_tag == dnnl::memory::format_tag::nChw8c) {
        src_shape = {static_cast<long>(src.layout[0]),
                     static_cast<long>(src.layout[1] * 8),
                     static_cast<long>(src.layout[2]),
                     static_cast<long>(src.layout[3])};
    }
    auto megdnn_src_md =
            dnnl::memory::desc({src_shape}, mkldnn_datatype, format_tag);
    if (use_mkl_mem) {
        auto megdnn_src_memory = dnnl::memory(megdnn_src_md, mkldnn_eng);
        return megdnn_src_memory;
    } else {
        auto megdnn_src_memory = dnnl::memory(megdnn_src_md, mkldnn_eng,
                                              const_cast<void*>(src.raw_ptr));
        return megdnn_src_memory;
    }
}

#endif

}  // namespace

PoolingImpl::AlgoPack::AlgoPack() {
    all_algos.push_back(&algo_mean_w2s2_avx);
    all_algos.push_back(&algo_mean_w2s2_sse3);
    all_algos.push_back(&algo_max_w2s2_sse);
    all_algos.push_back(&algo_max_w3s3_sse);
70
    all_algos.push_back(&algo_max_w13s1_nchw88_avx);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
#if MEGDNN_X86_WITH_MKL_DNN
    all_algos.push_back(&algo_mkldnn_nchw);
    all_algos.push_back(&algo_mkldnn_nchw88);
#endif
    all_algos.push_back(&algo_fallback);

    for (auto&& algo : all_algos) {
        m_all_algos_map.emplace(algo->info().desc, algo);
    }
}

PoolingImpl::AlgoPack PoolingImpl::sm_algo_pack;
MEGDNN_DEF_GET_ALGO_FROM_DESC(PoolingImpl)

PoolingImpl::AlgoBase::SizeArgs::SizeArgs(PoolingImpl* o,
                                          const TensorLayout& src,
                                          const TensorLayout& dst)
        : handle{static_cast<x86::HandleImpl*>(o->handle())},
          opr{o},
          layout_src{src},
          layout_dst{dst} {}

PoolingImpl::AlgoBase::ExecArgs::ExecArgs(PoolingImpl* opr,
                                          _megdnn_tensor_in src,
                                          _megdnn_tensor_out dst,
                                          _megdnn_workspace workspace)
        : SizeArgs(opr, src.layout, dst.layout),
          src_tensor{&src},
          dst_tensor{&dst},
          workspace{workspace} {}

std::string PoolingImpl::AlgoBase::SizeArgs::to_string() const {
    return ssprintf("src=%s, dst=%s", layout_src.to_string().c_str(),
                    layout_dst.to_string().c_str());
}

bool PoolingImpl::AlgoMeanW2S2AVX::is_available(const SizeArgs& args) const {
    auto SH = args.opr->param().stride_h;
    auto SW = args.opr->param().stride_w;
    auto FH = args.opr->param().window_h;
    auto FW = args.opr->param().window_w;

    return (is_supported(SIMDType::AVX) &&
            args.opr->param().mode == Mode::AVERAGE &&
            args.opr->param().format == Param::Format::NCHW &&
            args.layout_src.dtype == dtype::Float32() && FH == 2 && FW == 2 &&
            SH == 2 && SW == 2);
}

void PoolingImpl::AlgoMeanW2S2AVX::exec(const ExecArgs& args) const {
    auto N = args.layout_src.shape[0];
    auto C = args.layout_src.shape[1];
    auto IH = args.layout_src.shape[2];
    auto IW = args.layout_src.shape[3];
    auto OH = args.layout_dst.shape[2];
    auto OW = args.layout_dst.shape[3];
    auto PH = args.opr->param().pad_h;
    auto PW = args.opr->param().pad_w;
    auto sptr = reinterpret_cast<dt_float32*>(args.src_tensor->raw_ptr);
    auto dptr = reinterpret_cast<dt_float32*>(args.dst_tensor->raw_ptr);
    auto handle = [=]() { return args.handle; };
    MEGDNN_DISPATCH_CPU_KERN_OPR(rep(n, N) rep(c, C) {
        mean_pooling_w2x2_s2x2_avx(sptr + n * C * IH * IW + c * IH * IW, IH, IW,
                                   dptr + n * C * OH * OW + c * OH * OW, OH, OW,
                                   PH, PW, true);
    });
}

bool PoolingImpl::AlgoMeanW2S2SSE3::is_available(const SizeArgs& args) const {
    auto SH = args.opr->param().stride_h;
    auto SW = args.opr->param().stride_w;
    auto FH = args.opr->param().window_h;
    auto FW = args.opr->param().window_w;

    return (is_supported(SIMDType::SSE3) &&
            args.opr->param().mode == Mode::AVERAGE &&
            args.layout_src.dtype == dtype::Float32() &&
            args.opr->param().format == Param::Format::NCHW && FH == 2 &&
            FW == 2 && SH == 2 && SW == 2);
}

void PoolingImpl::AlgoMeanW2S2SSE3::exec(const ExecArgs& args) const {
    auto N = args.layout_src.shape[0];
    auto C = args.layout_src.shape[1];
    auto IH = args.layout_src.shape[2];
    auto IW = args.layout_src.shape[3];
    auto OH = args.layout_dst.shape[2];
    auto OW = args.layout_dst.shape[3];
    auto PH = args.opr->param().pad_h;
    auto PW = args.opr->param().pad_w;
    auto sptr = reinterpret_cast<dt_float32*>(args.src_tensor->raw_ptr);
    auto dptr = reinterpret_cast<dt_float32*>(args.dst_tensor->raw_ptr);
    auto handle = [=]() { return args.handle; };
    MEGDNN_DISPATCH_CPU_KERN_OPR(rep(n, N) rep(c, C) {
        mean_pooling_w2x2_s2x2_sse3(sptr + n * C * IH * IW + c * IH * IW, IH,
                                    IW, dptr + n * C * OH * OW + c * OH * OW,
                                    OH, OW, PH, PW, true);
    });
}

bool PoolingImpl::AlgoMaxW2S2SSE::is_available(const SizeArgs& args) const {
    auto SH = args.opr->param().stride_h;
    auto SW = args.opr->param().stride_w;
    auto FH = args.opr->param().window_h;
    auto FW = args.opr->param().window_w;

    return (is_supported(SIMDType::SSE) &&
            args.layout_src.dtype == dtype::Float32() &&
            args.opr->param().mode == Mode::MAX &&
            args.opr->param().format == Param::Format::NCHW && FH == 2 &&
            FW == 2 && SH == 2 && SW == 2);
}

void PoolingImpl::AlgoMaxW2S2SSE::exec(const ExecArgs& args) const {
    auto N = args.layout_src.shape[0];
    auto C = args.layout_src.shape[1];
    auto IH = args.layout_src.shape[2];
    auto IW = args.layout_src.shape[3];
    auto OH = args.layout_dst.shape[2];
    auto OW = args.layout_dst.shape[3];
    auto PH = args.opr->param().pad_h;
    auto PW = args.opr->param().pad_w;
    auto sptr = reinterpret_cast<dt_float32*>(args.src_tensor->raw_ptr);
    auto dptr = reinterpret_cast<dt_float32*>(args.dst_tensor->raw_ptr);
    auto handle = [=]() { return args.handle; };
    MEGDNN_DISPATCH_CPU_KERN_OPR(rep(n, N) rep(c, C) {
        max_pooling_w2x2_s2x2_sse(sptr + n * C * IH * IW + c * IH * IW, IH, IW,
                                  dptr + n * C * OH * OW + c * OH * OW, OH, OW,
                                  PH, PW);
    });
}

bool PoolingImpl::AlgoMaxW3S3SSE::is_available(const SizeArgs& args) const {
    auto SH = args.opr->param().stride_h;
    auto SW = args.opr->param().stride_w;
    auto FH = args.opr->param().window_h;
    auto FW = args.opr->param().window_w;

    return (is_supported(SIMDType::SSE) &&
            args.layout_src.dtype == dtype::Float32() &&
            args.opr->param().mode == Mode::MAX &&
            args.opr->param().format == Param::Format::NCHW && FH == 3 &&
            FW == 3 && SH == 2 && SW == 2);
}

void PoolingImpl::AlgoMaxW3S3SSE::exec(const ExecArgs& args) const {
    auto N = args.layout_src.shape[0];
    auto C = args.layout_src.shape[1];
    auto IH = args.layout_src.shape[2];
    auto IW = args.layout_src.shape[3];
    auto OH = args.layout_dst.shape[2];
    auto OW = args.layout_dst.shape[3];
    auto PH = args.opr->param().pad_h;
    auto PW = args.opr->param().pad_w;
    auto sptr = reinterpret_cast<dt_float32*>(args.src_tensor->raw_ptr);
    auto dptr = reinterpret_cast<dt_float32*>(args.dst_tensor->raw_ptr);
    auto handle = [=]() { return args.handle; };
    MEGDNN_DISPATCH_CPU_KERN_OPR(
            WorkspaceBundle ws = get_bundle(args.layout_src, args.layout_dst,
                                            args.opr->param());
            ws.set(args.workspace.raw_ptr); rep(n, N) rep(c, C) {
                do_max_pooling_3x3_s2x2_float_SSE(
                        sptr + n * C * IH * IW + c * IH * IW,
                        dptr + n * C * OH * OW + c * OH * OW, IH, IW, OH, OW,
                        PH, PW, ws);
            });
}

#if MEGDNN_X86_WITH_MKL_DNN
bool PoolingImpl::AlgoMKLDNNNCHW::is_available(const SizeArgs& args) const {
    return ((args.layout_src.dtype.enumv() == DTypeEnum::QuantizedS8 ||
             args.layout_src.dtype.enumv() == DTypeEnum::Int8) &&
            args.opr->param().mode == Mode::MAX &&
            args.opr->param().format == Param::Format::NCHW);
}

void PoolingImpl::AlgoMKLDNNNCHW::exec(const ExecArgs& args) const {
    auto PH = args.opr->param().pad_h;
    auto PW = args.opr->param().pad_w;
    auto FH = args.opr->param().window_h;
    auto FW = args.opr->param().window_w;
    auto SH = args.opr->param().stride_h;
    auto SW = args.opr->param().stride_w;
    auto handle = [=]() { return args.handle; };

    auto x86_handle = static_cast<HandleImpl*>(inplace_cpu_handle().get());
    auto mkldnn_eng = x86_handle->mkldnn_engine();
    auto mkldnn_stream = x86_handle->mkldnn_stream();
    auto mkldnn_pooling_mode = dnnl::algorithm::pooling_max;
    dnnl::memory::dims pool_strides = {SH, SW};
    dnnl::memory::dims pool_padding = {PH, PW};
    dnnl::memory::dims pool_kernel = {FH, FW};

    dnnl::memory&& megdnn_src_memory_ori =
            tensor_to_mkl_memory<dnnl::memory::format_tag::nchw, false>(
                    *args.src_tensor, mkldnn_eng, dnnl::memory::data_type::s8);
    dnnl::memory&& megdnn_dst_memory_ori =
            tensor_to_mkl_memory<dnnl::memory::format_tag::nchw, false>(
                    *args.dst_tensor, mkldnn_eng, dnnl::memory::data_type::s8);

    dnnl::memory&& megdnn_src_memory =
            tensor_to_mkl_memory<dnnl::memory::format_tag::nhwc, true>(
                    *args.src_tensor, mkldnn_eng, dnnl::memory::data_type::s8);
    dnnl::memory&& megdnn_dst_memory =
            tensor_to_mkl_memory<dnnl::memory::format_tag::nhwc, true>(
                    *args.dst_tensor, mkldnn_eng, dnnl::memory::data_type::s8);

    auto reorder_src = dnnl::reorder(megdnn_src_memory_ori, megdnn_src_memory);
    auto reorder_dst = dnnl::reorder(megdnn_dst_memory, megdnn_dst_memory_ori);
    auto pool1_desc = dnnl::pooling_forward::desc(
            dnnl::prop_kind::forward_inference, mkldnn_pooling_mode,
            megdnn_src_memory.get_desc(), megdnn_dst_memory.get_desc(),
            pool_strides, pool_kernel, pool_padding, pool_padding);
    auto pool_pd =
            dnnl::pooling_forward::primitive_desc(pool1_desc, mkldnn_eng);
    auto pool = dnnl::pooling_forward(pool_pd);

    auto run = [mkldnn_stream, mkldnn_eng, reorder_src, pool, reorder_dst,
                megdnn_src_memory_ori, megdnn_src_memory, megdnn_dst_memory,
                megdnn_dst_memory_ori](void) {
        MEGDNN_MARK_USED_VAR(mkldnn_eng);
        auto mkl_stream = mkldnn_stream;
        reorder_src.execute(mkl_stream, {{DNNL_ARG_FROM, megdnn_src_memory_ori},
                                         {DNNL_ARG_TO, megdnn_src_memory}});
        pool.execute(mkl_stream, {{DNNL_ARG_SRC, megdnn_src_memory},
                                  {DNNL_ARG_DST, megdnn_dst_memory}});
        reorder_dst.execute(mkl_stream, {{DNNL_ARG_FROM, megdnn_dst_memory},
                                         {DNNL_ARG_TO, megdnn_dst_memory_ori}});
        mkl_stream.wait();
    };
    MEGDNN_DISPATCH_CPU_KERN_OPR(run());
}

#endif

#if MEGDNN_X86_WITH_MKL_DNN
bool PoolingImpl::AlgoMKLDNNNCHW88::is_available(const SizeArgs& args) const {
    return (args.layout_src.dtype == dtype::Float32() &&
            args.opr->param().mode == Mode::MAX &&
            args.opr->param().format == Param::Format::NCHW88);
}

void PoolingImpl::AlgoMKLDNNNCHW88::exec(const ExecArgs& args) const {
    auto PH = args.opr->param().pad_h;
    auto PW = args.opr->param().pad_w;
    auto FH = args.opr->param().window_h;
    auto FW = args.opr->param().window_w;
    auto SH = args.opr->param().stride_h;
    auto SW = args.opr->param().stride_w;
    auto handle = [=]() { return args.handle; };

    auto x86_handle = static_cast<HandleImpl*>(inplace_cpu_handle().get());
    auto mkldnn_eng = x86_handle->mkldnn_engine();
    auto mkldnn_stream = x86_handle->mkldnn_stream();
    auto mkldnn_pooling_mode = dnnl::algorithm::pooling_max;
    switch (args.opr->param().mode) {
        case Mode::MAX:
            mkldnn_pooling_mode = dnnl::algorithm::pooling_max;
            break;
        case Mode::AVERAGE:
            mkldnn_pooling_mode = dnnl::algorithm::pooling_avg_include_padding;
            break;
        case Mode::AVERAGE_COUNT_EXCLUDE_PADDING:
            mkldnn_pooling_mode = dnnl::algorithm::pooling_avg_exclude_padding;
            break;
        default:
            megdnn_throw("not supported pooling mode\n");
    };

    dnnl::memory::dims pool_strides = {SH, SW};
    dnnl::memory::dims pool_padding = {PH, PW};
    dnnl::memory::dims pool_kernel = {FH, FW};
    dnnl::memory&& megdnn_src_memory_ori =
            tensor_to_mkl_memory<dnnl::memory::format_tag::nChw8c, false>(
                    *args.src_tensor, mkldnn_eng, dnnl::memory::data_type::f32);
    dnnl::memory&& megdnn_dst_memory_ori =
            tensor_to_mkl_memory<dnnl::memory::format_tag::nChw8c, false>(
                    *args.dst_tensor, mkldnn_eng, dnnl::memory::data_type::f32);
    auto pool_desc = dnnl::pooling_forward::desc(
            dnnl::prop_kind::forward_inference, mkldnn_pooling_mode,
            megdnn_src_memory_ori.get_desc(), megdnn_dst_memory_ori.get_desc(),
            pool_strides, pool_kernel, pool_padding, pool_padding);
    auto pool_pd = dnnl::pooling_forward::primitive_desc(pool_desc, mkldnn_eng);
    auto pool = dnnl::pooling_forward(pool_pd);

    auto run = [mkldnn_stream, pool, mkldnn_eng, megdnn_src_memory_ori,
                megdnn_dst_memory_ori](void) {
        MEGDNN_MARK_USED_VAR(mkldnn_eng);
        auto mkl_stream = mkldnn_stream;

        pool.execute(mkl_stream, {{DNNL_ARG_SRC, megdnn_src_memory_ori},
                                  {DNNL_ARG_DST, megdnn_dst_memory_ori}});
        mkl_stream.wait();
    };
    MEGDNN_DISPATCH_CPU_KERN_OPR(run());
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
#endif

namespace {
MEGDNN_ATTRIBUTE_TARGET("avx")
void max_pooling_s1_nchw88_avx_kern(const float* src, float* dst, int IH,
                                    int IW, int OH, int OW, int PH, int PW,
                                    int WH, int WW) {
    static float min_float = -std::numeric_limits<float>::max();
    static int VECSIZE = 8;

    __m256 ymm[16];
    const float* psrc = src;
    float* pdst = dst;

    //! deal all rows
    for (int row = 0; row < IH; ++row) {
        for (int j = 0; j < PW; ++j) {
            ymm[j] = _mm256_set1_ps(min_float);
        }
        int col_end = WW - PW < IW ? WW - PW : IW;
        for (int j = 0; j < col_end; ++j) {
            ymm[j + PW] = _mm256_loadu_ps(psrc + j * VECSIZE);
        }
        for (int j = col_end + PW; j < WW; ++j) {
            ymm[j] = _mm256_set1_ps(min_float);
        }

        int col_next = WW - PW;
        for (int j = 0; j < OW; ++j) {
            for (int i = WW - 2; i >= 0; --i) {
                ymm[i] = _mm256_max_ps(ymm[i], ymm[i + 1]);
            }
            _mm256_storeu_ps(pdst, ymm[0]);
            pdst += VECSIZE;
            for (int i = 0; i < WW - 1; ++i) {
                ymm[i] = ymm[i + 1];
            }
            if (col_next < IW) {
                ymm[WW - 1] = _mm256_loadu_ps(psrc + col_next * VECSIZE);
                col_next++;
            } else {
                ymm[WW - 1] = _mm256_set1_ps(min_float);
            }
        }
        psrc += IW * VECSIZE;
    }

    //! deal all cols
    float* src1 = dst;
    for (int col = 0; col < OW; ++col) {
        for (int j = 0; j < PH; ++j) {
            ymm[j] = _mm256_set1_ps(min_float);
        }
        int row_end = WH - PH < IH ? WH - PH : IH;
        for (int j = 0; j < row_end; ++j) {
            ymm[j + PH] = _mm256_loadu_ps(src1 + j * OW * VECSIZE);
        }
        for (int j = row_end + PH; j < WH; ++j) {
            ymm[j] = _mm256_set1_ps(min_float);
        }

        int row_next = WH - PH;
        pdst = src1;
        for (int j = 0; j < OH; ++j) {
            for (int i = WH - 2; i >= 0; --i) {
                ymm[i] = _mm256_max_ps(ymm[i], ymm[i + 1]);
            }
            _mm256_storeu_ps(pdst, ymm[0]);
            pdst += OW * VECSIZE;
            for (int i = 0; i < WH - 1; ++i) {
                ymm[i] = ymm[i + 1];
            }
            if (row_next < IH) {
                ymm[WH - 1] = _mm256_loadu_ps(src1 + row_next * OW * VECSIZE);
                row_next++;
            } else {
                ymm[WH - 1] = _mm256_set1_ps(min_float);
            }
        }
        src1 += VECSIZE;
    }
}
}  // namespace

bool PoolingImpl::AlgoMaxS1NCHW88AVX::is_available(const SizeArgs& args) const {
    bool is_dtype_ok = args.layout_src.dtype == dtype::Float32();
    bool is_mode_ok = args.opr->param().mode == Mode::MAX;
    bool is_format_ok = args.opr->param().format == Param::Format::NCHW88;
    bool is_shape_ok = args.opr->param().window_h >= 10 &&
                       args.opr->param().window_h <= 15 &&
                       args.opr->param().window_w >= 10 &&
                       args.opr->param().window_w <= 15;
    bool is_stride_ok =
            args.opr->param().stride_h == 1 && args.opr->param().stride_w == 1;
    //! this condition guarantee size of dst's memory is bigger enough because
    //! dst's memory will be used as workspace to store intermediate result.
    bool is_pad_ok =
            args.opr->param().pad_h >= args.opr->param().window_h / 2 &&
            args.opr->param().pad_w >= args.opr->param().window_w / 2;
    bool is_ins_ok = is_supported(SIMDType::AVX);
    return is_dtype_ok && is_mode_ok && is_format_ok && is_shape_ok &&
           is_pad_ok && is_stride_ok && is_ins_ok;
}

void PoolingImpl::AlgoMaxS1NCHW88AVX::exec(const ExecArgs& args) const {
    auto handle = args.handle;
    size_t N = args.layout_src.shape[0];
    static size_t VECSIZE = 8;
    size_t PH = args.opr->param().pad_h;
    size_t PW = args.opr->param().pad_w;
    size_t WH = args.opr->param().window_h;
    size_t WW = args.opr->param().window_w;
    size_t IC = args.layout_src.shape[1];
    size_t IH = args.layout_src.shape[2];
    size_t IW = args.layout_src.shape[3];
    size_t OH = args.layout_dst.shape[2];
    size_t OW = args.layout_dst.shape[3];
    float* src_ptr = reinterpret_cast<float*>(args.src_tensor->raw_ptr);
    float* dst_ptr = reinterpret_cast<float*>(args.dst_tensor->raw_ptr);

    auto run = [IC, src_ptr, dst_ptr, IH, IW, OH, OW, PH, PW, WH, WW](
                       size_t index, size_t) {
        size_t n = index / IC;
        size_t c = index % IC;
        float* src =
                src_ptr + n * IH * IW * IC * VECSIZE + IH * IW * c * VECSIZE;
        float* dst =
                dst_ptr + n * OH * OW * IC * VECSIZE + OH * OW * c * VECSIZE;
        max_pooling_s1_nchw88_avx_kern(src, dst, IH, IW, OH, OW, PH, PW, WH,
                                       WW);
    };
    MEGDNN_DISPATCH_MULTI_THREAD_CPU_KERN(handle, N * IC, run);
}