提交 29d63fe2 编写于 作者: P prife

Merge branch 'master' into simposix

......@@ -25,11 +25,12 @@
struct rt_mtd_nand_driver_ops;
#define RT_MTD_NAND_DEVICE(device) ((struct rt_mtd_nand_device*)(device))
#define RT_MTD_EOK 0
#define RT_MTD_EECC 1
#define RT_MTD_EBUSY 2
#define RT_MTD_EIO 3
#define RT_MTD_ENOMEM 4
#define RT_MTD_EOK 0 /* NO error */
#define RT_MTD_EECC 1 /* ECC error */
#define RT_MTD_EBUSY 2 /* hardware busy */
#define RT_MTD_EIO 3 /* generic IO issue */
#define RT_MTD_ENOMEM 4 /* out of memory */
#define RT_MTD_ESRC 5 /* source issue */
struct rt_mtd_nand_device
{
......
......@@ -124,7 +124,7 @@ static rt_err_t _get_string_descriptor(struct udevice* device, ureq_t setup)
}
}
if(setup->length == 0xFF)
if(setup->length > len)
len = str_desc.bLength;
else
len = setup->length;
......@@ -355,6 +355,38 @@ static rt_err_t _set_address(struct udevice* device, ureq_t setup)
return RT_EOK;
}
/**
* This function will handle standard request to
* interface that defined in class-specifics
*
* @param device the usb device object.
* @param setup the setup request.
*
* @return RT_EOK on successful.
*/
static rt_err_t _request_interface(struct udevice* device, ureq_t setup)
{
uintf_t intf;
uclass_t cls;
rt_err_t ret;
/* parameter check */
RT_ASSERT(device != RT_NULL);
RT_ASSERT(setup != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("_request_interface\n"));
intf = rt_usbd_find_interface(device, setup->index & 0xFF, &cls);
if (intf != RT_NULL)
{
ret = intf->handler(device, cls, setup);
}
else
ret = -RT_ERROR;
return ret;
}
/**
* This function will handle standard request.
*
......@@ -419,9 +451,14 @@ static rt_err_t _standard_request(struct udevice* device, ureq_t setup)
_set_interface(device, setup);
break;
default:
rt_kprintf("unknown interface request\n");
dcd_ep_stall(device->dcd, 0);
break;
if (_request_interface(device, setup) != RT_EOK)
{
rt_kprintf("unknown interface request\n");
dcd_ep_stall(device->dcd, 0);
return - RT_ERROR;
}
else
break;
}
break;
case USB_REQ_TYPE_ENDPOINT:
......
......@@ -623,7 +623,9 @@ long list(void)
rt_kprintf("--Variable List:\n");
{
struct finsh_sysvar *index;
for (index = _sysvar_table_begin; index < _sysvar_table_end; index ++)
for (index = _sysvar_table_begin;
index < _sysvar_table_end;
FINSH_NEXT_SYSVAR(index))
{
#ifdef FINSH_USING_DESCRIPTION
rt_kprintf("%-16s -- %s\n", index->name, index->desc);
......@@ -761,7 +763,9 @@ void list_prefix(char *prefix)
/* checks in system variable */
{
struct finsh_sysvar* index;
for (index = _sysvar_table_begin; index < _sysvar_table_end; index ++)
for (index = _sysvar_table_begin;
index < _sysvar_table_end;
FINSH_NEXT_SYSVAR(index))
{
if (str_is_prefix(prefix, index->name) == 0)
{
......
......@@ -64,8 +64,16 @@ typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned long u_long;
#if !defined(__CC_ARM) && !defined(__IAR_SYSTEMS_ICC__) && !defined(__ADSPBLACKFIN__) && !defined(_MSC_VER)
#if !defined(__CC_ARM) && \
!defined(__IAR_SYSTEMS_ICC__) && \
!defined(__ADSPBLACKFIN__) && \
!defined(_MSC_VER)
#if !(defined(__GNUC__) && defined(__x86_64__))
typedef unsigned int size_t;
#else
#include <stdio.h>
#endif
#ifndef NULL
#define NULL RT_NULL
......@@ -148,11 +156,14 @@ struct finsh_sysvar
void* var ; /* the address of variable */
};
#if defined(_MSC_VER)
#if defined(_MSC_VER) || (defined(__GNUC__) && defined(__x86_64__))
struct finsh_syscall* finsh_syscall_next(struct finsh_syscall* call);
struct finsh_sysvar* finsh_sysvar_next(struct finsh_sysvar* call);
#define FINSH_NEXT_SYSCALL(index) index=finsh_syscall_next(index)
#define FINSH_NEXT_SYSVAR(index) index=finsh_sysvar_next(index)
#else
#define FINSH_NEXT_SYSCALL(index) index++
#define FINSH_NEXT_SYSVAR(index) index++
#endif
/* system variable item */
......
......@@ -121,7 +121,9 @@ struct finsh_sysvar* finsh_sysvar_lookup(const char* name)
struct finsh_sysvar* index;
struct finsh_sysvar_item* item;
for (index = _sysvar_table_begin; index < _sysvar_table_end; index ++)
for (index = _sysvar_table_begin;
index < _sysvar_table_end;
FINSH_NEXT_SYSVAR(index))
{
if (strcmp(index->name, name) == 0)
return index;
......
......@@ -83,7 +83,7 @@ void finsh_syscall_append(const char* name, syscall_func func)
}
#endif
#ifdef _MSC_VER
#if defined(_MSC_VER) || (defined(__GNUC__) && defined(__x86_64__))
struct finsh_syscall* finsh_syscall_next(struct finsh_syscall* call)
{
unsigned int *ptr;
......@@ -93,6 +93,16 @@ struct finsh_syscall* finsh_syscall_next(struct finsh_syscall* call)
return (struct finsh_syscall*)ptr;
}
struct finsh_sysvar* finsh_sysvar_next(struct finsh_sysvar* call)
{
unsigned int *ptr;
ptr = (unsigned int*) (call + 1);
while ((*ptr == 0) && ((unsigned int*)ptr < (unsigned int*) _sysvar_table_end))
ptr ++;
return (struct finsh_sysvar*)ptr;
}
#endif
struct finsh_syscall* finsh_syscall_lookup(const char* name)
......
......@@ -11,6 +11,13 @@ cwd = GetCurrentDir()
src = Glob('*.c')
CPPPATH = [cwd]
group = DefineGroup('newlib', src, depend = ['RT_USING_NEWLIB'], CPPPATH = CPPPATH)
# link with libm in default.
# libm is a frequently used lib. Newlib is compiled with -ffunction-sections in
# recent GCC tool chains. The linker would just link in the functions that have
# been referenced. So setting this won't result in bigger text size.
LIBS = ['m']
group = DefineGroup('newlib', src, depend = ['RT_USING_NEWLIB'],
CPPPATH = CPPPATH, LIBS = LIBS)
Return('group')
#include <math.h>
/*
* COPYRIGHT: See COPYING in the top level directory
* PROJECT: ReactOS CRT
* FILE: lib/crt/math/cos.c
* PURPOSE: Generic C Implementation of cos
* PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org)
*/
#define PRECISION 9
static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
static double cos_sign_tbl[] = {1,-1,-1,1};
static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
static double sin_sign_tbl[] = {1,-1,-1,1};
double sin(double x)
{
int quadrant;
double x2, result;
/* Calculate the quadrant */
quadrant = x * (2./M_PI);
/* Get offset inside quadrant */
x = x - quadrant * (M_PI/2.);
/* Normalize quadrant to [0..3] */
quadrant = (quadrant - 1) & 0x3;
/* Fixup value for the generic function */
x += sin_off_tbl[quadrant];
/* Calculate the negative of the square of x */
x2 = - (x * x);
/* This is an unrolled taylor series using <PRECISION> iterations
* Example with 4 iterations:
* result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
* To save multiplications and to keep the precision high, it's performed
* like this:
* result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
*/
/* Start with 0, compiler will optimize this away */
result = 0;
#if (PRECISION >= 10)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
result *= x2;
#endif
#if (PRECISION >= 9)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
result *= x2;
#endif
#if (PRECISION >= 8)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
result *= x2;
#endif
#if (PRECISION >= 7)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
result *= x2;
#endif
#if (PRECISION >= 6)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
result *= x2;
#endif
#if (PRECISION >= 5)
result += 1./(1.*2*3*4*5*6*7*8*9*10);
result *= x2;
#endif
result += 1./(1.*2*3*4*5*6*7*8);
result *= x2;
result += 1./(1.*2*3*4*5*6);
result *= x2;
result += 1./(1.*2*3*4);
result *= x2;
result += 1./(1.*2);
result *= x2;
result += 1;
/* Apply correct sign */
result *= sin_sign_tbl[quadrant];
return result;
}
double cos(double x)
{
int quadrant;
double x2, result;
/* Calculate the quadrant */
quadrant = x * (2./M_PI);
/* Get offset inside quadrant */
x = x - quadrant * (M_PI/2.);
/* Normalize quadrant to [0..3] */
quadrant = quadrant & 0x3;
/* Fixup value for the generic function */
x += cos_off_tbl[quadrant];
/* Calculate the negative of the square of x */
x2 = - (x * x);
/* This is an unrolled taylor series using <PRECISION> iterations
* Example with 4 iterations:
* result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
* To save multiplications and to keep the precision high, it's performed
* like this:
* result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
*/
/* Start with 0, compiler will optimize this away */
result = 0;
#if (PRECISION >= 10)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
result *= x2;
#endif
#if (PRECISION >= 9)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
result *= x2;
#endif
#if (PRECISION >= 8)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
result *= x2;
#endif
#if (PRECISION >= 7)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
result *= x2;
#endif
#if (PRECISION >= 6)
result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
result *= x2;
#endif
#if (PRECISION >= 5)
result += 1./(1.*2*3*4*5*6*7*8*9*10);
result *= x2;
#endif
result += 1./(1.*2*3*4*5*6*7*8);
result *= x2;
result += 1./(1.*2*3*4*5*6);
result *= x2;
result += 1./(1.*2*3*4);
result *= x2;
result += 1./(1.*2);
result *= x2;
result += 1;
/* Apply correct sign */
result *= cos_sign_tbl[quadrant];
return result;
}
static const int N = 100;
double coef(int n)
{
double t;
if (n == 0)
{
return 0;
}
t = 1.0/n;
if (n%2 == 0)
{
t = -t;
}
return t;
}
double horner(double x)
{
double u = coef(N);
int i;
for(i=N-1; i>=0; i--)
{
u = u*x + coef(i);
}
return u;
}
double sqrt(double b)
{
double x = 1;
int step = 0;
while ((x*x-b<-0.000000000000001 || x*x-b>0.000000000000001) && step<50)
{
x = (b/x+x)/2.0;
step++;
}
return x;
}
double ln(double x)
{
int i;
if (x > 1.5)
{
for(i=0; x>1.25; i++)
{
x = sqrt(x);
}
return (1<<i)*horner(x-1);
}
else if (x<0.7 && x>0)
{
for(i=0; x<0.7; i++)
{
x = sqrt(x);
}
return (1<<i)*horner(x-1);
}
else if(x > 0)
{
return horner(x-1);
}
}
double exp(double x)
{
double sum = 1;
int i;
for(i=N; i>0; i--)
{
sum /= i;
sum *= x;
sum += 1;
}
return sum;
}
double pow(double m, double n)
{
return exp(n*ln(m));
}
......@@ -273,12 +273,18 @@ rt_err_t rt_timer_start(rt_timer_t timer)
for (n = timer_list->next; n != timer_list; n = n->next)
{
t = rt_list_entry(n, struct rt_timer, list);
/*
* It supposes that the new tick shall less than the half duration of
* tick max.
* tick max. And if we have two timers that timeout at the same time,
* it's prefered that the timer inserted early get called early.
*/
if ((t->timeout_tick - timer->timeout_tick) < RT_TICK_MAX / 2)
if ((t->timeout_tick - timer->timeout_tick) == 0)
{
rt_list_insert_after(n, &(timer->list));
break;
}
else if ((t->timeout_tick - timer->timeout_tick) < RT_TICK_MAX / 2)
{
rt_list_insert_before(n, &(timer->list));
break;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册