drv_hwtimer.c 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/*
 * Copyright (c) 2006-2022, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author            Notes
 * 2022-03-04     stevetong459      first version
 */

#include <board.h>

#define LOG_TAG               "drv.hwtimer"
#define DBG_LVL               DBG_INFO
#include <rtdbg.h>

#ifdef RT_USING_HWTIMER

static const struct rt_hwtimer_info _info =
{
    .maxfreq = 1000000,
    .minfreq = 2000,
    .maxcnt  = 0xFFFF,
    .cntmode = HWTIMER_CNTMODE_UP,
};

/* apm32 config class */
struct apm32_timer
{
    char         *name;
    TMR_T        *tmr;
    IRQn_Type    irqn;
    rt_hwtimer_t device;
};

enum
{
#ifdef BSP_USING_TMR1
    TMR1_INDEX,
#endif
#ifdef BSP_USING_TMR2
    TMR2_INDEX,
#endif
#ifdef BSP_USING_TMR3
    TMR3_INDEX,
#endif
#ifdef BSP_USING_TMR4
    TMR4_INDEX,
#endif
#ifdef BSP_USING_TMR5
    TMR5_INDEX,
#endif
#ifdef BSP_USING_TMR6
    TMR6_INDEX,
#endif
#ifdef BSP_USING_TMR7
    TMR7_INDEX,
#endif
#ifdef BSP_USING_TMR8
    TMR8_INDEX,
#endif
};

static struct apm32_timer tmr_config[] =
{
#ifdef BSP_USING_TMR1
    {
        "timer1",
        TMR1,
        TMR1_UP_IRQn,
    },
#endif
#ifdef BSP_USING_TMR2
    {
        "timer2",
        TMR2,
        TMR2_IRQn,
    },
#endif
#ifdef BSP_USING_TMR3
    {
        "timer3",
        TMR3,
        TMR3_IRQn,
    },
#endif
#ifdef BSP_USING_TMR4
    {
        "timer4",
        TMR4,
        TMR4_IRQn,
    },
#endif
#ifdef BSP_USING_TMR5
    {
        "timer5",
        TMR5,
        TMR5_IRQn,
    },
#endif
#ifdef BSP_USING_TMR6
    {
        "timer6",
        TMR6,
        TMR6_IRQn,
    },
#endif
#ifdef BSP_USING_TMR7
    {
        "timer7",
        TMR7,
        TMR7_IRQn,
    },
#endif
#ifdef BSP_USING_TMR8
    {
        "timer8",
        TMR8,
        TMR8_UP_IRQn,
    },
#endif
};

static rt_uint32_t _hwtimer_clock_get(TMR_T *tmr)
{
    uint32_t pclk1;

    RCM_ReadPCLKFreq(&pclk1, NULL);

    return (rt_uint32_t)(pclk1 * ((RCM->CFG_B.APB1PSC != RCM_APB_DIV_1) ? 2 : 1));
}

static void _hwtimer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
{
    TMR_BaseConfig_T base_config;
    uint32_t prescaler = 0;
    struct apm32_timer *timer_config;

    RT_ASSERT(timer != RT_NULL);

    if (state)
    {
        timer_config = (struct apm32_timer *)timer->parent.user_data;
        if (timer_config->tmr == TMR1)
        {
            RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_TMR1);
        }
        else if (timer_config->tmr == TMR8)
        {
            RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_TMR8);
        }
        else if (timer_config->tmr == TMR2)
        {
            RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR2);
        }
        else if (timer_config->tmr == TMR3)
        {
            RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR3);
        }
        else if (timer_config->tmr == TMR4)
        {
            RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR4);
        }
        else if (timer_config->tmr == TMR5)
        {
            RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR5);
        }
        else if (timer_config->tmr == TMR6)
        {
            RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR6);
        }
        else if (timer_config->tmr == TMR7)
        {
            RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR7);
        }

        prescaler = (uint32_t)(_hwtimer_clock_get(timer_config->tmr) / 10000) - 1;

        base_config.period          = 10000 - 1;
        base_config.division        = prescaler;
        base_config.clockDivision   = TMR_CLOCK_DIV_1;
        if (timer->info->cntmode == HWTIMER_CNTMODE_UP)
        {
            base_config.countMode   = TMR_COUNTER_MODE_UP;
        }
        else
        {
            base_config.countMode   = TMR_COUNTER_MODE_DOWN;
        }
        base_config.repetitionCounter = 0;
        TMR_ConfigTimeBase(timer_config->tmr, &base_config);

        /* set the TIMx priority */
        NVIC_EnableIRQRequest(timer_config->irqn, 3, 0);

        /* clear update flag */
        TMR_ClearStatusFlag(timer_config->tmr, TMR_FLAG_UPDATE);
        /* enable update request source */
        TMR_ConfigUpdateRequest(timer_config->tmr, TMR_UPDATE_SOURCE_REGULAR);
        LOG_D("%s init success", timer_config->name);
    }
}

static rt_err_t _hwtimer_start(rt_hwtimer_t *timer, rt_uint32_t t, rt_hwtimer_mode_t opmode)
{
    rt_err_t result = RT_EOK;
    struct apm32_timer *timer_config = RT_NULL;

    RT_ASSERT(timer != RT_NULL);

    timer_config = (struct apm32_timer *)timer->parent.user_data;

    /* set timer_config counter */
    TMR_ConfigCounter(timer_config->tmr, 0);
    /* set timer_config autoReload */
    TMR_ConfigAutoreload(timer_config->tmr, t - 1);

    if (opmode == HWTIMER_MODE_ONESHOT)
    {
        /* set timer to single mode */
        TMR_ConfigSinglePulseMode(timer_config->tmr, TMR_SPM_SINGLE);
    }
    else
    {
        TMR_ConfigSinglePulseMode(timer_config->tmr, TMR_SPM_REPETITIVE);
    }

    TMR_EnableInterrupt(timer_config->tmr, TMR_INT_UPDATE);

    if (timer_config->tmr == TMR1 || timer_config->tmr == TMR8 || timer_config->tmr == TMR2 ||
            timer_config->tmr == TMR3 || timer_config->tmr == TMR4  || timer_config->tmr == TMR5)
    {
        if (timer_config->tmr->SMCTRL_B.SMFSEL != TMR_SLAVE_MODE_TRIGGER)
        {
            TMR_Enable(timer_config->tmr);
            result = -RT_EOK;
        }
    }
    else
    {
        TMR_Enable(timer_config->tmr);
        result = -RT_EOK;
    }
    return result;
}

static void _hwtimer_stop(rt_hwtimer_t *timer)
{
    struct apm32_timer *timer_config = RT_NULL;
    RT_ASSERT(timer != RT_NULL);
    timer_config = (struct apm32_timer *)timer->parent.user_data;

    TMR_DisableInterrupt(timer_config->tmr, TMR_INT_UPDATE);
    TMR_Enable(timer_config->tmr);
    TMR_ConfigCounter(timer_config->tmr, 0);
}

static rt_err_t _hwtimer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
{
    struct apm32_timer *timer_config = RT_NULL;
    rt_err_t result = RT_EOK;
    rt_uint32_t freq;
    rt_uint16_t val;

    RT_ASSERT(timer != RT_NULL);
    RT_ASSERT(arg != RT_NULL);

    timer_config = (struct apm32_timer *)timer->parent.user_data;

    switch (cmd)
    {
    case HWTIMER_CTRL_FREQ_SET:
        /* set timer frequence */
        freq = *((rt_uint32_t *)arg);

        val = _hwtimer_clock_get(timer_config->tmr) / freq;

        TMR_ConfigPrescaler(timer_config->tmr, val - 1, TMR_PSC_RELOAD_IMMEDIATE);
        break;
    default:
        result = -RT_ENOSYS;
        break;
    }
    return result;
}

static rt_uint32_t _hwtimer_counter_get(rt_hwtimer_t *timer)
{
    struct apm32_timer *timer_config = RT_NULL;
    RT_ASSERT(timer != RT_NULL);
    timer_config = (struct apm32_timer *)timer->parent.user_data;

    return timer_config->tmr->CNT;
}

static const struct rt_hwtimer_ops _hwtimer_ops =
{
    .init  = _hwtimer_init,
    .start = _hwtimer_start,
    .stop  = _hwtimer_stop,
    .count_get = _hwtimer_counter_get,
    .control = _hwtimer_ctrl,
};

#ifdef BSP_USING_TMR1
void TMR1_UP_IRQHandler(void)
{
    rt_interrupt_enter();
    rt_device_hwtimer_isr(&tmr_config[TMR1_INDEX].device);
    TMR_ClearIntFlag(TMR1, TMR_INT_UPDATE);
    rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TMR2
void TMR2_IRQHandler(void)
{
    rt_interrupt_enter();
    rt_device_hwtimer_isr(&tmr_config[TMR2_INDEX].device);
    TMR_ClearIntFlag(TMR2, TMR_INT_UPDATE);
    rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TMR3
void TMR3_IRQHandler(void)
{
    rt_interrupt_enter();
    rt_device_hwtimer_isr(&tmr_config[TMR3_INDEX].device);
    TMR_ClearIntFlag(TMR3, TMR_INT_UPDATE);
    rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TMR4
void TMR4_IRQHandler(void)
{
    rt_interrupt_enter();
    rt_device_hwtimer_isr(&tmr_config[TMR4_INDEX].device);
    TMR_ClearIntFlag(TMR4, TMR_INT_UPDATE);
    rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TMR5
void TMR5_IRQHandler(void)
{
    rt_interrupt_enter();
    rt_device_hwtimer_isr(&tmr_config[TMR5_INDEX].device);
    TMR_ClearIntFlag(TMR5, TMR_INT_UPDATE);
    rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TMR6
void TMR6_IRQHandler(void)
{
    rt_interrupt_enter();
    rt_device_hwtimer_isr(&tmr_config[TMR6_INDEX].device);
    TMR_ClearIntFlag(TMR6, TMR_INT_UPDATE);
    rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TMR7
void TMR7_IRQHandler(void)
{
    rt_interrupt_enter();
    rt_device_hwtimer_isr(&tmr_config[TMR7_INDEX].device);
    TMR_ClearIntFlag(TMR7, TMR_INT_UPDATE);
    rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TMR8
void TMR8_UP_IRQHandler(void)
{
    rt_interrupt_enter();
    rt_device_hwtimer_isr(&tmr_config[TMR8_INDEX].device);
    TMR_ClearIntFlag(TMR8, TMR_INT_UPDATE);
    rt_interrupt_leave();
}
#endif

static int rt_hw_hwtimer_init(void)
{
    int i = 0;
    int result = RT_EOK;

    for (i = 0; i < sizeof(tmr_config) / sizeof(tmr_config[0]); i++)
    {
        tmr_config[i].device.info = &_info;
        tmr_config[i].device.ops  = &_hwtimer_ops;
        if (rt_device_hwtimer_register(&tmr_config[i].device, tmr_config[i].name, &tmr_config[i]) == RT_EOK)
        {
            LOG_D("%s register success", tmr_config[i].name);
        }
        else
        {
            LOG_E("%s register failed", tmr_config[i].name);
            result = -RT_ERROR;
        }
    }

    return result;
}
INIT_BOARD_EXPORT(rt_hw_hwtimer_init);

#endif /* RT_USING_HWTIMER */