drv_spi.c 10.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2006-2023, RT-Thread Development Team
3 4 5 6 7 8
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author            Notes
 * 2022-03-04     stevetong459      first version
9
 * 2022-07-15     Aligagago         add apm32F4 serie MCU support
10
 * 2022-12-26     luobeihai         add apm32F0 serie MCU support
11 12 13 14
 */

#include "drv_spi.h"

15
//#define DRV_DEBUG
16
#define LOG_TAG               "drv.spi"
17
#include "drv_log.h"
18 19 20

#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3)

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
static struct apm32_spi_config spi_config[] = {
#ifdef BSP_USING_SPI1
    {SPI1, "spi1"},
#endif

#ifdef BSP_USING_SPI2
    {SPI2, "spi2"},
#endif

#ifdef BSP_USING_SPI3
    {SPI3, "spi3"},
#endif
};

static struct apm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};

/**
  * Attach the spi device to SPI bus, this function must be used after initialization.
  */
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_T *cs_gpiox, uint16_t cs_gpio_pin)
41
{
42 43 44 45 46 47 48
    RT_ASSERT(bus_name != RT_NULL);
    RT_ASSERT(device_name != RT_NULL);

    rt_err_t result;
    struct rt_spi_device *spi_device;
    struct apm32_spi_cs *cs_pin;
    GPIO_Config_T GPIO_InitStructure;
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    /* initialize the cs pin && select the slave */
#if defined(SOC_SERIES_APM32F0)
    GPIO_ConfigStructInit(&GPIO_InitStructure);
    GPIO_InitStructure.pin = cs_gpio_pin;
    GPIO_InitStructure.speed = GPIO_SPEED_50MHz;
    GPIO_InitStructure.mode = GPIO_MODE_OUT;
    GPIO_InitStructure.outtype = GPIO_OUT_TYPE_PP;
    GPIO_InitStructure.pupd = GPIO_PUPD_NO;
    GPIO_Config(cs_gpiox, &GPIO_InitStructure);
    GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, Bit_SET);
#elif defined(SOC_SERIES_APM32F1)
    GPIO_ConfigStructInit(&GPIO_InitStructure);
    GPIO_InitStructure.pin = cs_gpio_pin;
    GPIO_InitStructure.mode = GPIO_MODE_OUT_PP;
    GPIO_InitStructure.speed = GPIO_SPEED_50MHz;
    GPIO_Config(cs_gpiox, &GPIO_InitStructure);
    GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, BIT_SET);
#elif defined(SOC_SERIES_APM32F4)
    GPIO_ConfigStructInit(&GPIO_InitStructure);
    GPIO_InitStructure.pin = cs_gpio_pin;
    GPIO_InitStructure.speed = GPIO_SPEED_100MHz;
    GPIO_InitStructure.mode = GPIO_MODE_OUT;
    GPIO_InitStructure.otype = GPIO_OTYPE_PP;
    GPIO_InitStructure.pupd = GPIO_PUPD_NOPULL;
    GPIO_Config(cs_gpiox, &GPIO_InitStructure);
    GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, BIT_SET);
#endif

    /* attach the device to spi bus */
    spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
    RT_ASSERT(spi_device != RT_NULL);
    cs_pin = (struct apm32_spi_cs *)rt_malloc(sizeof(struct apm32_spi_cs));
    RT_ASSERT(cs_pin != RT_NULL);
    cs_pin->GPIOx = cs_gpiox;
    cs_pin->GPIO_Pin = cs_gpio_pin;
    result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);

    if (result != RT_EOK)
    {
        LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
    }

    RT_ASSERT(result == RT_EOK);

    LOG_D("%s attach to %s done", device_name, bus_name);

    return result;
}

static rt_err_t apm32_spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
{
    RT_ASSERT(device != RT_NULL);
102
    RT_ASSERT(cfg != RT_NULL);
103

104
    SPI_Config_T hw_spi_config;
105

106 107 108
    struct rt_spi_bus * apm32_spi_bus = (struct rt_spi_bus *)device->bus;
    struct apm32_spi *spi_device = (struct apm32_spi *)apm32_spi_bus->parent.user_data;
    SPI_T *spi = spi_device->config->spi_x;
109

110 111 112 113
    uint32_t hw_spi_apb_clock;
#if (DBG_LVL == DBG_LOG)
    uint32_t hw_spi_sys_clock = RCM_ReadSYSCLKFreq();
#endif
114

115 116 117
    /* apm32 spi gpio init and enable clock */
    extern void apm32_msp_spi_init(void *Instance);
    apm32_msp_spi_init(spi);
118

119
    /* apm32 spi init */
120 121 122 123
    hw_spi_config.mode = (cfg->mode & RT_SPI_SLAVE) ? SPI_MODE_SLAVE : SPI_MODE_MASTER;
    hw_spi_config.direction = (cfg->mode & RT_SPI_3WIRE) ? SPI_DIRECTION_1LINE_RX : SPI_DIRECTION_2LINES_FULLDUPLEX;
    hw_spi_config.phase = (cfg->mode & RT_SPI_CPHA) ? SPI_CLKPHA_2EDGE : SPI_CLKPHA_1EDGE;
    hw_spi_config.polarity = (cfg->mode & RT_SPI_CPOL) ? SPI_CLKPOL_HIGH : SPI_CLKPOL_LOW;
124 125 126 127
#if defined(SOC_SERIES_APM32F0)
    hw_spi_config.slaveSelect = (cfg->mode & RT_SPI_NO_CS) ? SPI_SSC_DISABLE : SPI_SSC_ENABLE;
    hw_spi_config.firstBit = (cfg->mode & RT_SPI_MSB) ? SPI_FIRST_BIT_MSB : SPI_FIRST_BIT_LSB;
#else
128 129
    hw_spi_config.nss = (cfg->mode & RT_SPI_NO_CS) ? SPI_NSS_HARD : SPI_NSS_SOFT;
    hw_spi_config.firstBit = (cfg->mode & RT_SPI_MSB) ? SPI_FIRSTBIT_MSB : SPI_FIRSTBIT_LSB;
130
#endif
131

132 133 134 135 136 137 138 139 140 141
    if (cfg->data_width == 8)
    {
        hw_spi_config.length = SPI_DATA_LENGTH_8B;
    }
    else if (cfg->data_width == 16)
    {
        hw_spi_config.length = SPI_DATA_LENGTH_16B;
    }
    else
    {
142
        return -RT_EIO;
143 144
    }

145 146 147 148 149 150 151 152 153 154 155 156
#if defined(SOC_SERIES_APM32F0)
    hw_spi_apb_clock = RCM_ReadPCLKFreq();
#else
    if (spi == SPI1)
    {
        RCM_ReadPCLKFreq(NULL, &hw_spi_apb_clock);
    }
    else
    {
        RCM_ReadPCLKFreq(&hw_spi_apb_clock, NULL);
    }
#endif
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

    if (cfg->max_hz >= hw_spi_apb_clock / 2)
    {
        hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_2;
    }
    else if (cfg->max_hz >= hw_spi_apb_clock / 4)
    {
        hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_4;
    }
    else if (cfg->max_hz >= hw_spi_apb_clock / 8)
    {
        hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_8;
    }
    else if (cfg->max_hz >= hw_spi_apb_clock / 16)
    {
        hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_16;
    }
    else if (cfg->max_hz >= hw_spi_apb_clock / 32)
    {
        hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_32;
    }
    else if (cfg->max_hz >= hw_spi_apb_clock / 64)
    {
        hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_64;
    }
    else if (cfg->max_hz >= hw_spi_apb_clock / 128)
    {
        hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_128;
    }
    else
    {
188
        /* min prescaler 256 */
189 190 191 192 193
        hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_256;
    }

    LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
          hw_spi_sys_clock, hw_spi_apb_clock, cfg->max_hz, hw_spi_config.baudrateDiv);
194

195 196 197 198 199
#if defined(SOC_SERIES_APM32F0)
    SPI_DisableCRC(spi);
    SPI_EnableSSoutput(spi);
    SPI_ConfigFIFOThreshold(spi, SPI_RXFIFO_QUARTER);
#endif
200

201 202 203 204 205 206
    SPI_Config(spi, &hw_spi_config);
    SPI_Enable(spi);

    return RT_EOK;
}

207
static rt_ssize_t apm32_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
208 209 210 211 212
{
    RT_ASSERT(device != NULL);
    RT_ASSERT(message != NULL);

    struct rt_spi_configuration *config = &device->config;
213

214
    struct apm32_spi_cs *cs = device->parent.user_data;
215

216 217 218
    struct rt_spi_bus * apm32_spi_bus = (struct rt_spi_bus *)device->bus;
    struct apm32_spi *spi_device = (struct apm32_spi *)apm32_spi_bus->parent.user_data;
    SPI_T *spi = spi_device->config->spi_x;
219 220 221 222

    /* take CS */
    if (message->cs_take)
    {
223 224 225 226 227
#if defined(SOC_SERIES_APM32F0)
        GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, (GPIO_BSRET_T)RESET);
#else
        GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, RESET);
#endif
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        LOG_D("spi take cs\n");
    }

    if (config->data_width <= 8)
    {
        const rt_uint8_t *send_ptr = message->send_buf;
        rt_uint8_t *recv_ptr = message->recv_buf;
        rt_uint32_t size = message->length;

        LOG_D("spi poll transfer start: %d\n", size);

        while (size--)
        {
            rt_uint8_t data = 0xFF;

            if (send_ptr != RT_NULL)
            {
                data = *send_ptr++;
            }

248 249 250 251
#if defined(SOC_SERIES_APM32F0)
            /* Wait until the transmit buffer is empty */
            while (SPI_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET);
            SPI_TxData8(spi, data);
252

253 254 255 256
            /* Wait until a data is received */
            while (SPI_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET);
            data = SPI_RxData8(spi);
#else
257 258 259 260 261 262 263
            /* Wait until the transmit buffer is empty */
            while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET);
            SPI_I2S_TxData(spi, data);

            /* Wait until a data is received */
            while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET);
            data = SPI_I2S_RxData(spi);
264
#endif
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
            if (recv_ptr != RT_NULL)
            {
                *recv_ptr++ = data;
            }
        }
        LOG_D("spi poll transfer finsh\n");
    }
    else if (config->data_width <= 16)
    {
        const rt_uint16_t *send_ptr = message->send_buf;
        rt_uint16_t *recv_ptr = message->recv_buf;
        rt_uint32_t size = message->length;

        while (size--)
        {
            rt_uint16_t data = 0xFF;

            if (send_ptr != RT_NULL)
            {
                data = *send_ptr++;
            }
287

288 289 290 291
#if defined(SOC_SERIES_APM32F0)
            /* Wait until the transmit buffer is empty */
            while (SPI_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET);
            SPI_I2S_TxData16(spi, data);
292

293 294 295 296 297
            /* Wait until a data is received */
            while (SPI_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET);
            data = SPI_I2S_RxData16(spi);
#else
            /* Wait until the transmit buffer is empty */
298 299 300 301
            while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET);
            /* Send the byte */
            SPI_I2S_TxData(spi, data);

302
            /* Wait until a data is received */
303 304 305
            while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET);
            /* Get the received data */
            data = SPI_I2S_RxData(spi);
306
#endif
307

308 309 310 311 312 313 314 315 316 317
            if (recv_ptr != RT_NULL)
            {
                *recv_ptr++ = data;
            }
        }
    }

    /* release CS */
    if (message->cs_release)
    {
318 319 320 321 322
#if defined(SOC_SERIES_APM32F0)
        GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, (GPIO_BSRET_T)SET);
#else
        GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, SET);
#endif
323 324 325 326 327 328
        LOG_D("spi release cs\n");
    }

    return message->length;
};

329
static const struct rt_spi_ops apm32_spi_ops =
330
{
331 332
    apm32_spi_configure,
    apm32_spi_xfer
333 334 335 336
};

static int rt_hw_spi_init(void)
{
337
    rt_err_t result;
338

339 340 341 342 343 344
    for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
    {
        spi_bus_obj[i].config = &spi_config[i];
        spi_bus_obj[i].spi_bus.parent.user_data = (void *)&spi_bus_obj[i];
        result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].spi_bus_name, &apm32_spi_ops);
        RT_ASSERT(result == RT_EOK);
345

346 347
        LOG_D("%s bus init done", spi_config[i].spi_bus_name);
    }
348

349 350 351 352 353
    return result;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);

#endif /* RT_USING_SPI */