drv_adc.c 11.1 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * Copyright (c) 2006-2022, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author            Notes
 * 2022-03-04     stevetong459      first version
9
 * 2022-07-15     Aligagago         add apm32F4 serie MCU support
10
 * 2022-12-26     luobeihai         add apm32F0 serie MCU support
11 12 13 14 15 16
 */

#include <board.h>

#if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3)

17
#define DBG_TAG               "drv.adc"
18 19 20
#define DBG_LVL               DBG_INFO
#include <rtdbg.h>

21
#define DRV_ADC_CHANNEL_MAX_NUM  16
22 23
#define DRV_ADC_TIME_OUT         0xFFF

24 25
#define APM32_ADC_GET_PORT(pin_num) ((GPIO_T *)(GPIOA_BASE + (0x400u * (((pin_num) >> 4) & 0xFu))))
#define APM32_ADC_GET_PIN(pin_num)  ((uint16_t)(1u << ((pin_num) & 0xFu)))
26 27 28 29 30 31 32 33 34

struct apm32_adc
{
    const char *name;
    ADC_T *adc;
    ADC_Config_T adc_config;
    rt_base_t channel_pin[DRV_ADC_CHANNEL_MAX_NUM];
    struct rt_adc_device adc_dev;
};
35 36

#if defined(SOC_SERIES_APM32F1)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static struct apm32_adc adc_config[] =
{
#ifdef BSP_USING_ADC1
    {
        "adc1",
        ADC1,
        {
            ADC_MODE_INDEPENDENT,
            DISABLE,
            DISABLE,
            ADC_EXT_TRIG_CONV_None,
            ADC_DATA_ALIGN_RIGHT,
            1
        },
        {
            GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
            GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
            GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
        },
        RT_NULL
    },
#endif
#ifdef BSP_USING_ADC2
    {
        "adc2",
        ADC2,
        {
            ADC_MODE_INDEPENDENT,
            DISABLE,
            DISABLE,
            ADC_EXT_TRIG_CONV_None,
            ADC_DATA_ALIGN_RIGHT,
            1
        },
        {
            GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
            GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
            GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
        },
        RT_NULL
    },
#endif
#ifdef BSP_USING_ADC3
    {
        "adc3",
        ADC3,
        {
            ADC_MODE_INDEPENDENT,
            DISABLE,
            DISABLE,
            ADC_EXT_TRIG_CONV_None,
            ADC_DATA_ALIGN_RIGHT,
            1
        },
        {
            GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(F, 6),
            GET_PIN(F, 7), GET_PIN(F, 8), GET_PIN(F, 9), GET_PIN(F, 10)
        },
        RT_NULL
    },
#endif
};
99
#elif defined(SOC_SERIES_APM32F4)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
static struct apm32_adc adc_config[] =
{
#ifdef BSP_USING_ADC1
    {
        "adc1",
        ADC1,
        {
            ADC_RESOLUTION_12BIT,
            DISABLE,
            DISABLE,
            ADC_EXT_TRIG_EDGE_NONE,
            ADC_EXT_TRIG_CONV_TMR1_CC1,
            ADC_DATA_ALIGN_RIGHT,
            1
        },
        {
            GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
            GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
            GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
        },
        RT_NULL
    },
#endif
#ifdef BSP_USING_ADC2
    {
        "adc2",
        ADC2,
        {
            ADC_RESOLUTION_12BIT,
            DISABLE,
            DISABLE,
            ADC_EXT_TRIG_EDGE_NONE,
            ADC_EXT_TRIG_CONV_TMR1_CC1,
            ADC_DATA_ALIGN_RIGHT,
            1
        },
        {
            GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
            GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
            GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
        },
        RT_NULL
    },
#endif
#ifdef BSP_USING_ADC3
    {
        "adc3",
        ADC3,
        {
            ADC_RESOLUTION_12BIT,
            DISABLE,
            DISABLE,
            ADC_EXT_TRIG_EDGE_NONE,
            ADC_EXT_TRIG_CONV_TMR1_CC1,
            ADC_DATA_ALIGN_RIGHT,
            1
        },
        {
            GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(F, 6),
            GET_PIN(F, 7), GET_PIN(F, 8), GET_PIN(F, 9), GET_PIN(F, 10), GET_PIN(F, 3),
            GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
        },
        RT_NULL
    },
#endif
};
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
#elif defined(SOC_SERIES_APM32F0)
static struct apm32_adc adc_config[] =
{
#ifdef BSP_USING_ADC1
    {
        "adc1",
        ADC,
        {
            ADC_RESOLUTION_12B,
            ADC_DATA_ALIGN_RIGHT,
            ADC_SCAN_DIR_UPWARD,
            ADC_CONVERSION_SINGLE,
            ADC_EXT_TRIG_CONV_TRG0,
            ADC_EXT_TRIG_EDGE_NONE
        },
        {
            GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
            GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
            GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3), GET_PIN(C, 4),
            GET_PIN(C, 5)
        },
        RT_NULL
    },
#endif
};
191
#endif
192 193

static rt_err_t apm32_adc_channel_check(struct rt_adc_device *device, rt_uint32_t channel)
194 195
{
    struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data);
196
#if defined(SOC_SERIES_APM32F1)
197 198 199 200 201 202 203 204 205 206 207 208 209 210
    if (adc_cfg->adc == ADC3)
    {
        if (channel <= 8)
        {
            return RT_EOK;
        }
    }
    else
    {
        if (channel <= 13)
        {
            return RT_EOK;
        }
    }
211
#elif defined(SOC_SERIES_APM32F4)
212 213 214 215
    if (channel <= 13)
    {
        return RT_EOK;
    }
216 217 218 219 220
#elif defined(SOC_SERIES_APM32F0)
    if (channel <= 16)
    {
        return RT_EOK;
    }
221
#endif
222 223 224 225
    LOG_E("channel %d of %s is not supported.", channel, adc_cfg->name);
    return -RT_ERROR;
}

226
static rt_err_t apm32_adc_gpio_init(struct rt_adc_device *device, rt_uint32_t channel)
227 228 229 230
{
    struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data);
    GPIO_Config_T hw_gpio_config;

231
    if (apm32_adc_channel_check(device, channel) != RT_EOK)
232 233 234
    {
        return -RT_ERROR;
    }
235
#if defined(SOC_SERIES_APM32F1)
236 237
    RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu));
    hw_gpio_config.mode = GPIO_MODE_ANALOG;
238
#elif defined(SOC_SERIES_APM32F4)
239 240
    RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu));
    hw_gpio_config.mode = GPIO_MODE_AN;
241 242 243
#elif defined(SOC_SERIES_APM32F0)
    RCM_EnableAHBPeriphClock(RCM_AHB_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu));
    hw_gpio_config.mode = GPIO_MODE_AN;
244
#endif
245 246
    hw_gpio_config.pin = APM32_ADC_GET_PIN(adc_cfg->channel_pin[channel]);
    GPIO_Config(APM32_ADC_GET_PORT(adc_cfg->channel_pin[channel]), &hw_gpio_config);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

    return RT_EOK;
}

/**
 * @brief    This function will control the adc to enable or disable.
 *
 * @param    device is a pointer to adc device.
 *
 * @param    channel is the adc channel.
 *
 * @param    enabled is the status to indicate enable or disable.
 *
 * @return   RT_EOK indicates successful enable or disable adc, other value indicates failed.
 */
262
static rt_err_t apm32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
263 264 265 266 267
{
    struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data);

    RT_ASSERT(device != RT_NULL);

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
#if defined(SOC_SERIES_APM32F0)
    if (enabled)
    {
        RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC1);
        if (apm32_adc_gpio_init(device, channel) != RT_EOK)
        {
            return -RT_ERROR;
        }
        ADC_Config(&adc_cfg->adc_config);
        ADC_Enable();
    }
    else
    {
        ADC_Disable();
    }
#else
284 285 286 287 288 289 290 291 292 293 294 295 296 297
    if (enabled)
    {
        if (adc_cfg->adc == ADC1)
        {
            RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC1);
        }
        else if (adc_cfg->adc == ADC2)
        {
            RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC2);
        }
        else
        {
            RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC3);
        }
298
        if (apm32_adc_gpio_init(device, channel) != RT_EOK)
299 300 301 302 303 304 305 306 307 308 309 310
        {
            return -RT_ERROR;
        }

        ADC_Config(adc_cfg->adc, &adc_cfg->adc_config);

        ADC_Enable(adc_cfg->adc);
    }
    else
    {
        ADC_Disable(adc_cfg->adc);
    }
311
#endif
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    return RT_EOK;
}

/**
 * @brief    This function will get the adc conversion value.
 *
 * @param    device is a pointer to adc device.
 *
 * @param    channel is the adc channel.
 *
 * @param    value is a pointer to the adc conversion value.
 *
 * @return   RT_EOK indicates successful get adc value, other value indicates failed.
 */
327
static rt_err_t apm32_adc_get_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
328
{
329
#if !defined(SOC_SERIES_APM32F0)
330
    struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data);
331
#endif
332 333 334 335 336
    volatile rt_uint32_t counter = 0;

    RT_ASSERT(device != RT_NULL);
    RT_ASSERT(value != RT_NULL);

337
    if (apm32_adc_channel_check(device, channel) != RT_EOK)
338 339 340
    {
        return -RT_ERROR;
    }
341 342
    
#if defined(SOC_SERIES_APM32F1)
343 344 345 346 347 348 349 350 351 352 353 354 355
    ADC_ConfigRegularChannel(adc_cfg->adc, channel, 1, ADC_SAMPLETIME_13CYCLES5);

    ADC_StartCalibration(adc_cfg->adc);
    /* Check the end of ADC calibration */
    while (ADC_ReadCalibrationStartFlag(adc_cfg->adc))
    {
        if (++counter > DRV_ADC_TIME_OUT)
        {
            return RT_ETIMEOUT;
        }
    }

    ADC_EnableSoftwareStartConv(adc_cfg->adc);
356 357 358 359 360 361 362 363 364 365
    
    while (!ADC_ReadStatusFlag(adc_cfg->adc, ADC_FLAG_EOC))
    {
        if (++counter > DRV_ADC_TIME_OUT)
        {
            return RT_ETIMEOUT;
        }
    }
    *value = ADC_ReadConversionValue(adc_cfg->adc);
#elif defined(SOC_SERIES_APM32F4)
366 367
    ADC_ConfigRegularChannel(adc_cfg->adc, channel, 1, ADC_SAMPLETIME_15CYCLES);
    ADC_SoftwareStartConv(adc_cfg->adc);
368
    
369 370 371 372 373 374 375 376
    while (!ADC_ReadStatusFlag(adc_cfg->adc, ADC_FLAG_EOC))
    {
        if (++counter > DRV_ADC_TIME_OUT)
        {
            return RT_ETIMEOUT;
        }
    }
    *value = ADC_ReadConversionValue(adc_cfg->adc);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
#elif defined(SOC_SERIES_APM32F0)
    ADC_ConfigChannel((uint16_t)(1u << ((channel) & 0xFu)), ADC_SAMPLE_TIME_239_5);
    
    ADC_StartConversion();
    
    while (!ADC_ReadStatusFlag(ADC_FLAG_CC))
    {
        if (++counter > DRV_ADC_TIME_OUT)
        {
            return RT_ETIMEOUT;
        }
    }
    *value = ADC_ReadConversionValue();
#endif
    
392 393 394
    return RT_EOK;
}

395
static const struct rt_adc_ops apm32_adc_ops =
396
{
397 398
    .enabled = apm32_adc_enabled,
    .convert = apm32_adc_get_value,
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
};

/**
 * @brief    ADC initialization function.
 *
 * @return   RT_EOK indicates successful initialization, other value indicates failed;
 */
static int rt_hw_adc_init(void)
{
    rt_err_t result = RT_EOK;
    rt_size_t obj_num = sizeof(adc_config) / sizeof(struct apm32_adc);
    rt_uint32_t i = 0;

    for (i = 0; i < obj_num; i++)
    {
        /* register ADC device */
415
        if (rt_hw_adc_register(&adc_config[i].adc_dev, adc_config[i].name, &apm32_adc_ops, &adc_config[i]) == RT_EOK)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        {
            LOG_D("%s init success", adc_config[i].name);
        }
        else
        {
            LOG_D("%s init failed", adc_config[i].name);
            result = -RT_ERROR;
        }
    }

    return result;
}
INIT_BOARD_EXPORT(rt_hw_adc_init);

#endif /* BSP_USING_ADCX */