Algorithms_in_C++  1.0.0
Set of algorithms implemented in C++.
gcd_iterative_euclidean.cpp File Reference

Compute the greatest common denominator of two integers using iterative form of Euclidean algorithm More...

#include <iostream>
#include <stdexcept>
Include dependency graph for gcd_iterative_euclidean.cpp:

Functions

int gcd (int num1, int num2)
 
int main ()
 

Detailed Description

Compute the greatest common denominator of two integers using iterative form of Euclidean algorithm

See also
gcd_recursive_euclidean.cpp, gcd_of_n_numbers.cpp

Function Documentation

◆ gcd()

int gcd ( int  num1,
int  num2 
)

algorithm

15  {
16  if (num1 <= 0 | num2 <= 0) {
17  throw std::domain_error("Euclidean algorithm domain is for ints > 0");
18  }
19 
20  if (num1 == num2) {
21  return num1;
22  }
23 
24  int base_num = 0;
25  int previous_remainder = 1;
26 
27  if (num1 > num2) {
28  base_num = num1;
29  previous_remainder = num2;
30  } else {
31  base_num = num2;
32  previous_remainder = num1;
33  }
34 
35  while ((base_num % previous_remainder) != 0) {
36  int old_base = base_num;
37  base_num = previous_remainder;
38  previous_remainder = old_base % previous_remainder;
39  }
40 
41  return previous_remainder;
42 }

◆ main()

int main ( void  )

Main function

47  {
48  std::cout << "gcd of 120,7 is " << (gcd(120, 7)) << std::endl;
49  try {
50  std::cout << "gcd of -120,10 is " << gcd(-120, 10) << std::endl;
51  } catch (const std::domain_error &e) {
52  std::cout << "Error handling was successful" << std::endl;
53  }
54  std::cout << "gcd of 312,221 is " << (gcd(312, 221)) << std::endl;
55  std::cout << "gcd of 289,204 is " << (gcd(289, 204)) << std::endl;
56 
57  return 0;
58 }
Here is the call graph for this function:
std::domain_error
STL class.
gcd
int gcd(int num1, int num2)
Definition: gcd_iterative_euclidean.cpp:15
std::cout
std::endl
T endl(T... args)