/* * The Clear BSD License * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted (subject to the limitations in the disclaimer below) provided * that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_flexio_i2s.h" /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.flexio_i2s" #endif /******************************************************************************* * Definitations ******************************************************************************/ enum _sai_transfer_state { kFLEXIO_I2S_Busy = 0x0U, /*!< FLEXIO_I2S is busy */ kFLEXIO_I2S_Idle, /*!< Transfer is done. */ }; /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Receive a piece of data in non-blocking way. * * @param base FLEXIO I2S base pointer * @param bitWidth How many bits in a audio word, usually 8/16/24/32 bits. * @param buffer Pointer to the data to be read. * @param size Bytes to be read. */ static void FLEXIO_I2S_ReadNonBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *rxData, size_t size); /*! * @brief sends a piece of data in non-blocking way. * * @param base FLEXIO I2S base pointer * @param bitWidth How many bits in a audio word, usually 8/16/24/32 bits. * @param buffer Pointer to the data to be written. * @param size Bytes to be written. */ static void FLEXIO_I2S_WriteNonBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *txData, size_t size); /******************************************************************************* * Variables ******************************************************************************/ /******************************************************************************* * Code ******************************************************************************/ static uint32_t FLEXIO_I2S_GetInstance(FLEXIO_I2S_Type *base) { return FLEXIO_GetInstance(base->flexioBase); } static void FLEXIO_I2S_WriteNonBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *txData, size_t size) { uint32_t i = 0; uint8_t j = 0; uint8_t bytesPerWord = bitWidth / 8U; uint32_t data = 0; uint32_t temp = 0; for (i = 0; i < size / bytesPerWord; i++) { for (j = 0; j < bytesPerWord; j++) { temp = (uint32_t)(*txData); data |= (temp << (8U * j)); txData++; } base->flexioBase->SHIFTBUFBIS[base->txShifterIndex] = (data << (32U - bitWidth)); data = 0; } } static void FLEXIO_I2S_ReadNonBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *rxData, size_t size) { uint32_t i = 0; uint8_t j = 0; uint8_t bytesPerWord = bitWidth / 8U; uint32_t data = 0; for (i = 0; i < size / bytesPerWord; i++) { data = (base->flexioBase->SHIFTBUFBIS[base->rxShifterIndex] >> (32U - bitWidth)); for (j = 0; j < bytesPerWord; j++) { *rxData = (data >> (8U * j)) & 0xFF; rxData++; } } } void FLEXIO_I2S_Init(FLEXIO_I2S_Type *base, const flexio_i2s_config_t *config) { assert(base && config); flexio_shifter_config_t shifterConfig = {0}; flexio_timer_config_t timerConfig = {0}; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Ungate flexio clock. */ CLOCK_EnableClock(s_flexioClocks[FLEXIO_I2S_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Set shifter for I2S Tx data */ shifterConfig.timerSelect = base->bclkTimerIndex; shifterConfig.pinSelect = base->txPinIndex; shifterConfig.timerPolarity = config->txTimerPolarity; shifterConfig.pinConfig = kFLEXIO_PinConfigOutput; shifterConfig.pinPolarity = config->txPinPolarity; shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit; shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin; shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable; if (config->masterSlave == kFLEXIO_I2S_Master) { shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnShift; } else { shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable; } FLEXIO_SetShifterConfig(base->flexioBase, base->txShifterIndex, &shifterConfig); /* Set shifter for I2S Rx Data */ shifterConfig.timerSelect = base->bclkTimerIndex; shifterConfig.pinSelect = base->rxPinIndex; shifterConfig.timerPolarity = config->rxTimerPolarity; shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled; shifterConfig.pinPolarity = config->rxPinPolarity; shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive; shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin; shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable; shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable; FLEXIO_SetShifterConfig(base->flexioBase, base->rxShifterIndex, &shifterConfig); /* Set Timer to I2S frame sync */ if (config->masterSlave == kFLEXIO_I2S_Master) { timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_PININPUT(base->txPinIndex); timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh; timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceExternal; timerConfig.pinConfig = kFLEXIO_PinConfigOutput; timerConfig.pinSelect = base->fsPinIndex; timerConfig.pinPolarity = config->fsPinPolarity; timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit; timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset; timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput; timerConfig.timerReset = kFLEXIO_TimerResetNever; timerConfig.timerDisable = kFLEXIO_TimerDisableNever; timerConfig.timerEnable = kFLEXIO_TimerEnableOnPrevTimerEnable; timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled; timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled; } else { timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_PININPUT(base->bclkPinIndex); timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh; timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal; timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled; timerConfig.pinSelect = base->fsPinIndex; timerConfig.pinPolarity = config->fsPinPolarity; timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit; timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset; timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnTriggerInputShiftTriggerInput; timerConfig.timerReset = kFLEXIO_TimerResetNever; timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare; timerConfig.timerEnable = kFLEXIO_TimerEnableOnPinRisingEdge; timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled; timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled; } FLEXIO_SetTimerConfig(base->flexioBase, base->fsTimerIndex, &timerConfig); /* Set Timer to I2S bit clock */ if (config->masterSlave == kFLEXIO_I2S_Master) { timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->txShifterIndex); timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow; timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal; timerConfig.pinSelect = base->bclkPinIndex; timerConfig.pinConfig = kFLEXIO_PinConfigOutput; timerConfig.pinPolarity = config->bclkPinPolarity; timerConfig.timerMode = kFLEXIO_TimerModeDual8BitBaudBit; timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset; timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput; timerConfig.timerReset = kFLEXIO_TimerResetNever; timerConfig.timerDisable = kFLEXIO_TimerDisableNever; timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh; timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled; timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled; } else { timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_TIMn(base->fsTimerIndex); timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh; timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal; timerConfig.pinSelect = base->bclkPinIndex; timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled; timerConfig.pinPolarity = config->bclkPinPolarity; timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit; timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset; timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnPinInputShiftPinInput; timerConfig.timerReset = kFLEXIO_TimerResetNever; timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompareTriggerLow; timerConfig.timerEnable = kFLEXIO_TimerEnableOnPinRisingEdgeTriggerHigh; timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled; timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled; } FLEXIO_SetTimerConfig(base->flexioBase, base->bclkTimerIndex, &timerConfig); /* If enable flexio I2S */ if (config->enableI2S) { base->flexioBase->CTRL |= FLEXIO_CTRL_FLEXEN_MASK; } else { base->flexioBase->CTRL &= ~FLEXIO_CTRL_FLEXEN_MASK; } } void FLEXIO_I2S_GetDefaultConfig(flexio_i2s_config_t *config) { config->masterSlave = kFLEXIO_I2S_Master; config->enableI2S = true; config->txPinPolarity = kFLEXIO_PinActiveHigh; config->rxPinPolarity = kFLEXIO_PinActiveHigh; config->bclkPinPolarity = kFLEXIO_PinActiveHigh; config->fsPinPolarity = kFLEXIO_PinActiveLow; config->txTimerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive; config->rxTimerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive; } void FLEXIO_I2S_Deinit(FLEXIO_I2S_Type *base) { base->flexioBase->SHIFTCFG[base->txShifterIndex] = 0; base->flexioBase->SHIFTCTL[base->txShifterIndex] = 0; base->flexioBase->SHIFTCFG[base->rxShifterIndex] = 0; base->flexioBase->SHIFTCTL[base->rxShifterIndex] = 0; base->flexioBase->TIMCFG[base->fsTimerIndex] = 0; base->flexioBase->TIMCMP[base->fsTimerIndex] = 0; base->flexioBase->TIMCTL[base->fsTimerIndex] = 0; base->flexioBase->TIMCFG[base->bclkTimerIndex] = 0; base->flexioBase->TIMCMP[base->bclkTimerIndex] = 0; base->flexioBase->TIMCTL[base->bclkTimerIndex] = 0; } void FLEXIO_I2S_EnableInterrupts(FLEXIO_I2S_Type *base, uint32_t mask) { if (mask & kFLEXIO_I2S_TxDataRegEmptyInterruptEnable) { FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1U << base->txShifterIndex); } if (mask & kFLEXIO_I2S_RxDataRegFullInterruptEnable) { FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1U << base->rxShifterIndex); } } uint32_t FLEXIO_I2S_GetStatusFlags(FLEXIO_I2S_Type *base) { uint32_t status = 0; status = ((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->txShifterIndex)) >> base->txShifterIndex); status |= (((FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->rxShifterIndex)) >> (base->rxShifterIndex)) << 1U); return status; } void FLEXIO_I2S_DisableInterrupts(FLEXIO_I2S_Type *base, uint32_t mask) { if (mask & kFLEXIO_I2S_TxDataRegEmptyInterruptEnable) { FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1U << base->txShifterIndex); } if (mask & kFLEXIO_I2S_RxDataRegFullInterruptEnable) { FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1U << base->rxShifterIndex); } } void FLEXIO_I2S_MasterSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_format_t *format, uint32_t srcClock_Hz) { uint32_t timDiv = srcClock_Hz / (format->sampleRate_Hz * 32U * 2U); uint32_t bclkDiv = 0; /* Shall keep bclk and fs div an integer */ if (timDiv % 2) { timDiv += 1U; } /* Set Frame sync timer cmp */ base->flexioBase->TIMCMP[base->fsTimerIndex] = FLEXIO_TIMCMP_CMP(32U * timDiv - 1U); /* Set bit clock timer cmp */ bclkDiv = ((timDiv / 2U - 1U) | (63U << 8U)); base->flexioBase->TIMCMP[base->bclkTimerIndex] = FLEXIO_TIMCMP_CMP(bclkDiv); } void FLEXIO_I2S_SlaveSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_format_t *format) { /* Set Frame sync timer cmp */ base->flexioBase->TIMCMP[base->fsTimerIndex] = FLEXIO_TIMCMP_CMP(32U * 4U - 3U); /* Set bit clock timer cmp */ base->flexioBase->TIMCMP[base->bclkTimerIndex] = FLEXIO_TIMCMP_CMP(32U * 2U - 1U); } void FLEXIO_I2S_WriteBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *txData, size_t size) { uint32_t i = 0; uint8_t bytesPerWord = bitWidth / 8U; for (i = 0; i < size / bytesPerWord; i++) { /* Wait until it can write data */ while ((FLEXIO_I2S_GetStatusFlags(base) & kFLEXIO_I2S_TxDataRegEmptyFlag) == 0) { } FLEXIO_I2S_WriteNonBlocking(base, bitWidth, txData, bytesPerWord); txData += bytesPerWord; } /* Wait until the last data is sent */ while ((FLEXIO_I2S_GetStatusFlags(base) & kFLEXIO_I2S_TxDataRegEmptyFlag) == 0) { } } void FLEXIO_I2S_ReadBlocking(FLEXIO_I2S_Type *base, uint8_t bitWidth, uint8_t *rxData, size_t size) { uint32_t i = 0; uint8_t bytesPerWord = bitWidth / 8U; for (i = 0; i < size / bytesPerWord; i++) { /* Wait until data is received */ while (!(FLEXIO_GetShifterStatusFlags(base->flexioBase) & (1U << base->rxShifterIndex))) { } FLEXIO_I2S_ReadNonBlocking(base, bitWidth, rxData, bytesPerWord); rxData += bytesPerWord; } } void FLEXIO_I2S_TransferTxCreateHandle(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_callback_t callback, void *userData) { assert(handle); IRQn_Type flexio_irqs[] = FLEXIO_IRQS; /* Zero the handle. */ memset(handle, 0, sizeof(*handle)); /* Store callback and user data. */ handle->callback = callback; handle->userData = userData; /* Save the context in global variables to support the double weak mechanism. */ FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_I2S_TransferTxHandleIRQ); /* Set the TX/RX state. */ handle->state = kFLEXIO_I2S_Idle; /* Enable interrupt in NVIC. */ EnableIRQ(flexio_irqs[FLEXIO_I2S_GetInstance(base)]); } void FLEXIO_I2S_TransferRxCreateHandle(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_callback_t callback, void *userData) { assert(handle); IRQn_Type flexio_irqs[] = FLEXIO_IRQS; /* Zero the handle. */ memset(handle, 0, sizeof(*handle)); /* Store callback and user data. */ handle->callback = callback; handle->userData = userData; /* Save the context in global variables to support the double weak mechanism. */ FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_I2S_TransferRxHandleIRQ); /* Set the TX/RX state. */ handle->state = kFLEXIO_I2S_Idle; /* Enable interrupt in NVIC. */ EnableIRQ(flexio_irqs[FLEXIO_I2S_GetInstance(base)]); } void FLEXIO_I2S_TransferSetFormat(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_format_t *format, uint32_t srcClock_Hz) { assert(handle && format); /* Set the bitWidth to handle */ handle->bitWidth = format->bitWidth; /* Set sample rate */ if (srcClock_Hz != 0) { /* It is master */ FLEXIO_I2S_MasterSetFormat(base, format, srcClock_Hz); } else { FLEXIO_I2S_SlaveSetFormat(base, format); } } status_t FLEXIO_I2S_TransferSendNonBlocking(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_transfer_t *xfer) { assert(handle); /* Check if the queue is full */ if (handle->queue[handle->queueUser].data) { return kStatus_FLEXIO_I2S_QueueFull; } if ((xfer->dataSize == 0) || (xfer->data == NULL)) { return kStatus_InvalidArgument; } /* Add into queue */ handle->queue[handle->queueUser].data = xfer->data; handle->queue[handle->queueUser].dataSize = xfer->dataSize; handle->transferSize[handle->queueUser] = xfer->dataSize; handle->queueUser = (handle->queueUser + 1) % FLEXIO_I2S_XFER_QUEUE_SIZE; /* Set the state to busy */ handle->state = kFLEXIO_I2S_Busy; FLEXIO_I2S_EnableInterrupts(base, kFLEXIO_I2S_TxDataRegEmptyInterruptEnable); /* Enable Tx transfer */ FLEXIO_I2S_Enable(base, true); return kStatus_Success; } status_t FLEXIO_I2S_TransferReceiveNonBlocking(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, flexio_i2s_transfer_t *xfer) { assert(handle); /* Check if the queue is full */ if (handle->queue[handle->queueUser].data) { return kStatus_FLEXIO_I2S_QueueFull; } if ((xfer->dataSize == 0) || (xfer->data == NULL)) { return kStatus_InvalidArgument; } /* Add into queue */ handle->queue[handle->queueUser].data = xfer->data; handle->queue[handle->queueUser].dataSize = xfer->dataSize; handle->transferSize[handle->queueUser] = xfer->dataSize; handle->queueUser = (handle->queueUser + 1) % FLEXIO_I2S_XFER_QUEUE_SIZE; /* Set state to busy */ handle->state = kFLEXIO_I2S_Busy; /* Enable interrupt */ FLEXIO_I2S_EnableInterrupts(base, kFLEXIO_I2S_RxDataRegFullInterruptEnable); /* Enable Rx transfer */ FLEXIO_I2S_Enable(base, true); return kStatus_Success; } void FLEXIO_I2S_TransferAbortSend(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle) { assert(handle); /* Stop Tx transfer and disable interrupt */ FLEXIO_I2S_DisableInterrupts(base, kFLEXIO_I2S_TxDataRegEmptyInterruptEnable); handle->state = kFLEXIO_I2S_Idle; /* Clear the queue */ memset(handle->queue, 0, sizeof(flexio_i2s_transfer_t) * FLEXIO_I2S_XFER_QUEUE_SIZE); handle->queueDriver = 0; handle->queueUser = 0; } void FLEXIO_I2S_TransferAbortReceive(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle) { assert(handle); /* Stop rx transfer and disable interrupt */ FLEXIO_I2S_DisableInterrupts(base, kFLEXIO_I2S_RxDataRegFullInterruptEnable); handle->state = kFLEXIO_I2S_Idle; /* Clear the queue */ memset(handle->queue, 0, sizeof(flexio_i2s_transfer_t) * FLEXIO_I2S_XFER_QUEUE_SIZE); handle->queueDriver = 0; handle->queueUser = 0; } status_t FLEXIO_I2S_TransferGetSendCount(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, size_t *count) { assert(handle); status_t status = kStatus_Success; if (handle->state != kFLEXIO_I2S_Busy) { status = kStatus_NoTransferInProgress; } else { *count = (handle->transferSize[handle->queueDriver] - handle->queue[handle->queueDriver].dataSize); } return status; } status_t FLEXIO_I2S_TransferGetReceiveCount(FLEXIO_I2S_Type *base, flexio_i2s_handle_t *handle, size_t *count) { assert(handle); status_t status = kStatus_Success; if (handle->state != kFLEXIO_I2S_Busy) { status = kStatus_NoTransferInProgress; } else { *count = (handle->transferSize[handle->queueDriver] - handle->queue[handle->queueDriver].dataSize); } return status; } void FLEXIO_I2S_TransferTxHandleIRQ(void *i2sBase, void *i2sHandle) { assert(i2sHandle); flexio_i2s_handle_t *handle = (flexio_i2s_handle_t *)i2sHandle; FLEXIO_I2S_Type *base = (FLEXIO_I2S_Type *)i2sBase; uint8_t *buffer = handle->queue[handle->queueDriver].data; uint8_t dataSize = handle->bitWidth / 8U; /* Handle error */ if (FLEXIO_GetShifterErrorFlags(base->flexioBase) & (1U << base->txShifterIndex)) { FLEXIO_ClearShifterErrorFlags(base->flexioBase, (1U << base->txShifterIndex)); } /* Handle transfer */ if (((FLEXIO_I2S_GetStatusFlags(base) & kFLEXIO_I2S_TxDataRegEmptyFlag) != 0) && (handle->queue[handle->queueDriver].data != NULL)) { FLEXIO_I2S_WriteNonBlocking(base, handle->bitWidth, buffer, dataSize); /* Update internal counter */ handle->queue[handle->queueDriver].dataSize -= dataSize; handle->queue[handle->queueDriver].data += dataSize; } /* If finished a blcok, call the callback function */ if ((handle->queue[handle->queueDriver].dataSize == 0U) && (handle->queue[handle->queueDriver].data != NULL)) { memset(&handle->queue[handle->queueDriver], 0, sizeof(flexio_i2s_transfer_t)); handle->queueDriver = (handle->queueDriver + 1) % FLEXIO_I2S_XFER_QUEUE_SIZE; if (handle->callback) { (handle->callback)(base, handle, kStatus_Success, handle->userData); } } /* If all data finished, just stop the transfer */ if (handle->queue[handle->queueDriver].data == NULL) { FLEXIO_I2S_TransferAbortSend(base, handle); } } void FLEXIO_I2S_TransferRxHandleIRQ(void *i2sBase, void *i2sHandle) { assert(i2sHandle); flexio_i2s_handle_t *handle = (flexio_i2s_handle_t *)i2sHandle; FLEXIO_I2S_Type *base = (FLEXIO_I2S_Type *)i2sBase; uint8_t *buffer = handle->queue[handle->queueDriver].data; uint8_t dataSize = handle->bitWidth / 8U; /* Handle transfer */ if (((FLEXIO_I2S_GetStatusFlags(base) & kFLEXIO_I2S_RxDataRegFullFlag) != 0) && (handle->queue[handle->queueDriver].data != NULL)) { FLEXIO_I2S_ReadNonBlocking(base, handle->bitWidth, buffer, dataSize); /* Update internal state */ handle->queue[handle->queueDriver].dataSize -= dataSize; handle->queue[handle->queueDriver].data += dataSize; } /* If finished a blcok, call the callback function */ if ((handle->queue[handle->queueDriver].dataSize == 0U) && (handle->queue[handle->queueDriver].data != NULL)) { memset(&handle->queue[handle->queueDriver], 0, sizeof(flexio_i2s_transfer_t)); handle->queueDriver = (handle->queueDriver + 1) % FLEXIO_I2S_XFER_QUEUE_SIZE; if (handle->callback) { (handle->callback)(base, handle, kStatus_Success, handle->userData); } } /* If all data finished, just stop the transfer */ if (handle->queue[handle->queueDriver].data == NULL) { FLEXIO_I2S_TransferAbortReceive(base, handle); } }