/* * File : module.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2010-01-09 Bernard first version * 2010-04-09 yi.qiu implement based on first version * 2010-10-23 yi.qiu implement module memory allocator * 2011-05-25 yi.qiu implement module hook function * 2011-06-23 yi.qiu rewrite module memory allocator */ #include #include #include #include "string.h" #ifdef RT_USING_MODULE #include "module.h" #define elf_module ((Elf32_Ehdr *)module_ptr) #define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff)) #define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff)) #define IS_PROG(s) (s.sh_type == SHT_PROGBITS) #define IS_NOPROG(s) (s.sh_type == SHT_NOBITS) #define IS_REL(s) (s.sh_type == SHT_REL) #define IS_RELA(s) (s.sh_type == SHT_RELA) #define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC) #define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR)) #define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE)) #define PAGE_COUNT_MAX 256 /* module memory allocator */ struct rt_mem_head { rt_size_t size; /* size of memory block */ struct rt_mem_head *next; /* next valid memory block */ }; struct rt_page_info { rt_uint32_t *page_ptr; rt_uint32_t npage; }; #ifdef RT_USING_SLAB static void *rt_module_malloc_page(rt_size_t npages); static void rt_module_free_page(rt_module_t module, void *page_ptr, rt_size_t npages); #endif static rt_module_t rt_current_module = RT_NULL; static struct rt_semaphore mod_sem; static struct rt_module_symtab *_rt_module_symtab_begin = RT_NULL, *_rt_module_symtab_end = RT_NULL; rt_list_t rt_module_symbol_list; /** * @ingroup SystemInit * * This function will initialize system module */ void rt_system_module_init(void) { #ifdef __GNUC__ extern int __rtmsymtab_start; extern int __rtmsymtab_end; _rt_module_symtab_begin = (struct rt_module_symtab *)&__rtmsymtab_start; _rt_module_symtab_end = (struct rt_module_symtab *)&__rtmsymtab_end; #elif defined (__CC_ARM) extern int RTMSymTab$$Base; extern int RTMSymTab$$Limit; _rt_module_symtab_begin = (struct rt_module_symtab *)&RTMSymTab$$Base; _rt_module_symtab_end = (struct rt_module_symtab *)&RTMSymTab$$Limit; #endif rt_list_init(&rt_module_symbol_list); /* initialize heap semaphore */ rt_sem_init(&mod_sem, "module", 1, RT_IPC_FLAG_FIFO); /* init current module */ rt_current_module = RT_NULL; } static rt_uint32_t rt_module_symbol_find(const char *sym_str) { /* find in kernel symbol table */ struct rt_module_symtab *index; for (index = _rt_module_symtab_begin; index != _rt_module_symtab_end; index ++) { if (rt_strcmp(index->name, sym_str) == 0) return (rt_uint32_t)index->addr; } return 0; } /** * This function will return self module object * * @return the self module object */ rt_module_t rt_module_self(void) { /* return current module */ return rt_current_module; } /** * This function will set current module object * * @return RT_EOK */ rt_err_t rt_module_set(rt_module_t module) { /* set current module */ rt_current_module = module; return RT_EOK; } static int rt_module_arm_relocate(struct rt_module *module, Elf32_Rel *rel, Elf32_Addr sym_val) { Elf32_Addr *where, tmp; Elf32_Sword addend, offset; rt_uint32_t upper, lower, sign, j1, j2; where = (Elf32_Addr *)((rt_uint8_t *)module->module_space + rel->r_offset); switch (ELF32_R_TYPE(rel->r_info)) { case R_ARM_NONE: break; case R_ARM_ABS32: *where += (Elf32_Addr)sym_val; RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_ABS32: %x -> %x\n", where, *where)); break; case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: addend = *where & 0x00ffffff; if (addend & 0x00800000) addend |= 0xff000000; tmp = sym_val - (Elf32_Addr)where + (addend << 2); tmp >>= 2; *where = (*where & 0xff000000) | (tmp & 0x00ffffff); RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_PC24: %x -> %x\n", where, *where)); break; case R_ARM_REL32: *where += sym_val - (Elf32_Addr)where; RT_DEBUG_LOG(RT_DEBUG_MODULE,("R_ARM_REL32: %x -> %x, sym %x, offset %x\n", where, *where, sym_val, rel->r_offset)); break; case R_ARM_V4BX: *where &= 0xf000000f; *where |= 0x01a0f000; break; case R_ARM_GLOB_DAT: case R_ARM_JUMP_SLOT: *where = (Elf32_Addr)sym_val; RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_JUMP_SLOT: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val)); break; #if 0 /* To do */ case R_ARM_GOT_BREL: temp = (Elf32_Addr)sym_val; *where = (Elf32_Addr)&temp; RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_GOT_BREL: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val)); break; #endif case R_ARM_RELATIVE: *where += (Elf32_Addr)sym_val; //RT_DEBUG_LOG(RT_DEBUG_MODULE, //("R_ARM_RELATIVE: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val)); break; case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: upper = *(rt_uint16_t *)where; lower = *(rt_uint16_t *)((Elf32_Addr)where + 2); sign = (upper >> 10) & 1; j1 = (lower >> 13) & 1; j2 = (lower >> 11) & 1; offset = (sign << 24) | ((~(j1 ^ sign) & 1) << 23) | ((~(j2 ^ sign) & 1) << 22) | ((upper & 0x03ff) << 12) | ((lower & 0x07ff) << 1); if (offset & 0x01000000) offset -= 0x02000000; offset += sym_val - (Elf32_Addr)where; if (!(offset & 1) || offset <= (rt_int32_t)0xff000000 || offset >= (rt_int32_t)0x01000000) { rt_kprintf("only Thumb addresses allowed\n"); return -1; } sign = (offset >> 24) & 1; j1 = sign ^ (~(offset >> 23) & 1); j2 = sign ^ (~(offset >> 22) & 1); *(rt_uint16_t *)where = (rt_uint16_t)((upper & 0xf800) | (sign << 10) | ((offset >> 12) & 0x03ff)); *(rt_uint16_t *)(where + 2) = (rt_uint16_t)((lower & 0xd000) | (j1 << 13) | (j2 << 11) | ((offset >> 1) & 0x07ff)); upper = *(rt_uint16_t *)where; lower = *(rt_uint16_t *)((Elf32_Addr)where + 2); break; default: return -1; } return 0; } static void rt_module_init_object_container(struct rt_module *module) { RT_ASSERT(module != RT_NULL); /* initialize object container - thread */ rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list)); module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread); module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread; #ifdef RT_USING_SEMAPHORE /* initialize object container - semaphore */ rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list)); module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore); module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore; #endif #ifdef RT_USING_MUTEX /* initialize object container - mutex */ rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list)); module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex); module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex; #endif #ifdef RT_USING_EVENT /* initialize object container - event */ rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list)); module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event); module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event; #endif #ifdef RT_USING_MAILBOX /* initialize object container - mailbox */ rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list)); module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox); module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox; #endif #ifdef RT_USING_MESSAGEQUEUE /* initialize object container - message queue */ rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list)); module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue); module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue; #endif #ifdef RT_USING_MEMHEAP /* initialize object container - memory heap */ rt_list_init(&(module->module_object[RT_Object_Class_MemHeap].object_list)); module->module_object[RT_Object_Class_MemHeap].object_size = sizeof(struct rt_memheap); module->module_object[RT_Object_Class_MemHeap].type = RT_Object_Class_MemHeap; #endif #ifdef RT_USING_MEMPOOL /* initialize object container - memory pool */ rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list)); module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool); module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool; #endif #ifdef RT_USING_DEVICE /* initialize object container - device */ rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list)); module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device); module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device; #endif /* initialize object container - timer */ rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list)); module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer); module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer; } #ifdef RT_USING_HOOK static void (*rt_module_load_hook)(rt_module_t module); static void (*rt_module_unload_hook)(rt_module_t module); /** * @addtogroup Hook */ /*@{*/ /** * This function will set a hook function, which will be invoked when module * be loaded to system. * * @param hook the hook function */ void rt_module_load_sethook(void (*hook)(rt_module_t module)) { rt_module_load_hook = hook; } /** * This function will set a hook function, which will be invoked when module * be unloaded from system. * * @param hook the hook function */ void rt_module_unload_sethook(void (*hook)(rt_module_t module)) { rt_module_unload_hook = hook; } /*@}*/ #endif static struct rt_module* _load_shared_object(const char *name, void *module_ptr) { rt_uint8_t *ptr = RT_NULL; rt_module_t module = RT_NULL; rt_bool_t linked = RT_FALSE; rt_uint32_t index, module_size = 0; RT_ASSERT(module_ptr != RT_NULL); if(rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) == 0) { /* rtmlinker finished */ linked = RT_TRUE; } /* get the ELF image size */ for (index = 0; index < elf_module->e_phnum; index++) { if(phdr[index].p_type == PT_LOAD) module_size += phdr[index].p_memsz; } if (module_size == 0) { rt_kprintf(" module size error\n"); return RT_NULL; } /* allocate module */ module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, name); if (!module) return RT_NULL; module->nref = 0; /* allocate module space */ module->module_space = rt_malloc(module_size); if (module->module_space == RT_NULL) { rt_object_delete(&(module->parent)); return RT_NULL; } /* zero all space */ ptr = module->module_space; rt_memset(ptr, 0, module_size); rt_kprintf(" load address at 0x%x\n", ptr); for (index = 0; index < elf_module->e_phnum; index++) { if (phdr[index].p_type == PT_LOAD) { rt_memcpy(ptr, (rt_uint8_t *)elf_module + phdr[index].p_offset, phdr[index].p_filesz); ptr += phdr[index].p_memsz; } } /* set module entry */ module->module_entry = module->module_space + elf_module->e_entry; /* handle relocation section */ for (index = 0; index < elf_module->e_shnum; index ++) { if (IS_REL(shdr[index])) { rt_uint32_t i, nr_reloc; Elf32_Sym *symtab; Elf32_Rel *rel; rt_uint8_t *strtab; static rt_bool_t unsolved = RT_FALSE; /* get relocate item */ rel = (Elf32_Rel *)((rt_uint8_t *)module_ptr + shdr[index].sh_offset); /* locate .rel.plt and .rel.dyn section */ symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset); strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset; nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel)); /* relocate every items */ for (i = 0; i < nr_reloc; i ++) { Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)]; RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol %s shndx %d\n", strtab + sym->st_name, sym->st_shndx)); if((sym->st_shndx != SHT_NULL) || (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) rt_module_arm_relocate(module, rel, (Elf32_Addr)(module->module_space + sym->st_value)); else if(!linked) { Elf32_Addr addr; RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol: %s\n", strtab + sym->st_name)); /* need to resolve symbol in kernel symbol table */ addr = rt_module_symbol_find((const char *)(strtab + sym->st_name)); if (addr == 0) { rt_kprintf("can't find %s in kernel symbol table\n", strtab + sym->st_name); unsolved = RT_TRUE; } else rt_module_arm_relocate(module, rel, addr); } rel ++; } if (unsolved) { rt_object_delete(&(module->parent)); rt_free(module); return RT_NULL; } } } /* construct module symbol table */ for (index = 0; index < elf_module->e_shnum; index ++) { /* find .dynsym section */ rt_uint8_t *shstrab = (rt_uint8_t *)module_ptr + shdr[elf_module->e_shstrndx].sh_offset; if (rt_strcmp((const char *)(shstrab + shdr[index].sh_name), ELF_DYNSYM) == 0) break; } /* found .dynsym section */ if (index != elf_module->e_shnum) { int i, count = 0; Elf32_Sym *symtab = RT_NULL; rt_uint8_t *strtab = RT_NULL; symtab =(Elf32_Sym *)((rt_uint8_t *)module_ptr + shdr[index].sh_offset); strtab = (rt_uint8_t *)module_ptr + shdr[shdr[index].sh_link].sh_offset; for (i=0; isymtab = (struct rt_module_symtab *)rt_malloc(count * sizeof(struct rt_module_symtab)); module->nsym = count; for (i=0, count=0; isymtab[count].addr = (void *)(module->module_space + symtab[i].st_value); module->symtab[count].name = rt_malloc(length); rt_memset((void *)module->symtab[count].name, 0, length); rt_memcpy((void *)module->symtab[count].name, strtab + symtab[i].st_name, length); count ++; } } } return module; } static struct rt_module* _load_relocated_object(const char *name, void *module_ptr) { rt_uint32_t index, rodata_addr = 0, bss_addr = 0, data_addr = 0; rt_uint32_t module_addr = 0, module_size = 0; struct rt_module *module = RT_NULL; rt_uint8_t *ptr, *strtab, *shstrab; /* get the ELF image size */ for (index = 0; index < elf_module->e_shnum; index++) { /* text */ if (IS_PROG(shdr[index]) && IS_AX(shdr[index])) { module_size += shdr[index].sh_size; module_addr = shdr[index].sh_addr; } /* rodata */ if (IS_PROG(shdr[index]) && IS_ALLOC(shdr[index])) { module_size += shdr[index].sh_size; } /* data */ if (IS_PROG(shdr[index]) && IS_AW(shdr[index])) { module_size += shdr[index].sh_size; } /* bss */ if (IS_NOPROG(shdr[index]) && IS_AW(shdr[index])) { module_size += shdr[index].sh_size; } } /* no text, data and bss on image */ if (module_size == 0) return RT_NULL; /* allocate module */ module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, (const char *)name); if (module == RT_NULL) return RT_NULL; /* allocate module space */ module->module_space = rt_malloc(module_size); if (module->module_space == RT_NULL) { rt_object_delete(&(module->parent)); return RT_NULL; } /* zero all space */ ptr = module->module_space; rt_memset(ptr, 0, module_size); /* load text and data section */ for (index = 0; index < elf_module->e_shnum; index++) { /* load text section */ if (IS_PROG(shdr[index]) && IS_AX(shdr[index])) { rt_memcpy(ptr, (rt_uint8_t*)elf_module + shdr[index].sh_offset, shdr[index].sh_size); RT_DEBUG_LOG(RT_DEBUG_MODULE,("load text 0x%x, size %d\n", ptr, shdr[index].sh_size)); ptr += shdr[index].sh_size; } /* load rodata section */ if (IS_PROG(shdr[index]) && IS_ALLOC(shdr[index])) { rt_memcpy(ptr, (rt_uint8_t*)elf_module + shdr[index].sh_offset, shdr[index].sh_size); rodata_addr = (rt_uint32_t)ptr; RT_DEBUG_LOG(RT_DEBUG_MODULE,("load rodata 0x%x, size %d, rodata 0x%x\n", ptr, shdr[index].sh_size, *(rt_uint32_t*)data_addr)); ptr += shdr[index].sh_size; } /* load data section */ if (IS_PROG(shdr[index]) && IS_AW(shdr[index])) { rt_memcpy(ptr, (rt_uint8_t*)elf_module + shdr[index].sh_offset, shdr[index].sh_size); data_addr = (rt_uint32_t)ptr; RT_DEBUG_LOG(RT_DEBUG_MODULE,("load data 0x%x, size %d, data 0x%x\n", ptr, shdr[index].sh_size, *(rt_uint32_t*)data_addr)); ptr += shdr[index].sh_size; } /* load bss section */ if (IS_NOPROG(shdr[index]) && IS_AW(shdr[index])) { rt_memset(ptr, 0, shdr[index].sh_size); bss_addr = (rt_uint32_t)ptr; RT_DEBUG_LOG(RT_DEBUG_MODULE,("load bss 0x%x, size %d,\n", ptr, shdr[index].sh_size)); } } /* set module entry */ module->module_entry = (rt_uint8_t*)module->module_space + elf_module->e_entry - module_addr; /* handle relocation section */ for (index = 0; index < elf_module->e_shnum; index ++) { if (IS_REL(shdr[index])) { rt_uint32_t i, nr_reloc; Elf32_Sym *symtab; Elf32_Rel *rel; /* get relocate item */ rel = (Elf32_Rel *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset); /* locate .dynsym and .dynstr */ symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset); strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset; shstrab = (rt_uint8_t*) module_ptr + shdr[elf_module->e_shstrndx].sh_offset; nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel)); /* relocate every items */ for (i = 0; i < nr_reloc; i ++) { Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)]; RT_DEBUG_LOG(RT_DEBUG_MODULE,("relocate symbol: %s\n", strtab + sym->st_name)); if (sym->st_shndx != STN_UNDEF) { if((ELF_ST_TYPE(sym->st_info) == STT_SECTION) || (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)) { if (rt_strncmp((const char*)(shstrab + shdr[sym->st_shndx].sh_name), ELF_RODATA, 8) == 0) { /* relocate rodata section */ RT_DEBUG_LOG(RT_DEBUG_MODULE,("rodata\n")); rt_module_arm_relocate(module, rel,(Elf32_Addr)(rodata_addr + sym->st_value)); } else if(rt_strncmp((const char*)(shstrab + shdr[sym->st_shndx].sh_name), ELF_BSS, 5) == 0) { /* relocate bss section */ RT_DEBUG_LOG(RT_DEBUG_MODULE,("bss\n")); rt_module_arm_relocate(module, rel, (Elf32_Addr)bss_addr + sym->st_value); } else if(rt_strncmp((const char*)(shstrab + shdr[sym->st_shndx].sh_name), ELF_DATA, 6) == 0) { /* relocate data section */ RT_DEBUG_LOG(RT_DEBUG_MODULE,("data\n")); rt_module_arm_relocate(module, rel, (Elf32_Addr)data_addr + sym->st_value); } } } else if(ELF_ST_TYPE(sym->st_info) == STT_FUNC ) { /* relocate function */ rt_module_arm_relocate(module, rel, (Elf32_Addr)((rt_uint8_t*)module->module_space - module_addr + sym->st_value)); } else { Elf32_Addr addr; if(ELF32_R_TYPE(rel->r_info) != R_ARM_V4BX) { RT_DEBUG_LOG(RT_DEBUG_MODULE,("relocate symbol: %s\n", strtab + sym->st_name)); /* need to resolve symbol in kernel symbol table */ addr = rt_module_symbol_find((const char*)(strtab + sym->st_name)); if (addr != (Elf32_Addr)RT_NULL) { rt_module_arm_relocate(module, rel, addr); RT_DEBUG_LOG(RT_DEBUG_MODULE,("symbol addr 0x%x\n", addr)); } else rt_kprintf("can't find %s in kernel symbol table\n", strtab + sym->st_name); } else { rt_module_arm_relocate(module, rel, (Elf32_Addr)((rt_uint8_t*)module->module_space - module_addr + sym->st_value)); } } rel ++; } } } return module; } /** * This function will load a module from memory and create a thread for it * * @param name the name of module, which shall be unique * @param module_ptr the memory address of module image * * @return the module object */ rt_module_t rt_module_load(const char *name, void *module_ptr) { rt_module_t module; RT_DEBUG_NOT_IN_INTERRUPT; rt_kprintf("rt_module_load: %s ,", name); /* check ELF header */ if(rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) != 0 && rt_memcmp(elf_module->e_ident, ELFMAG, SELFMAG) != 0) { rt_kprintf(" module magic error\n"); return RT_NULL; } /* check ELF class */ if(elf_module->e_ident[EI_CLASS] != ELFCLASS32) { rt_kprintf(" module class error\n"); return RT_NULL; } if(elf_module->e_type == ET_REL) { module = _load_relocated_object(name, module_ptr); } else if(elf_module->e_type == ET_DYN) { module = _load_shared_object(name, module_ptr); } else { rt_kprintf("unsupported elf type\n"); return RT_NULL; } if(module == RT_NULL) return RT_NULL; /* init module object container */ rt_module_init_object_container(module); /* increase module reference count */ module->nref ++; if (elf_module->e_entry != 0) { #ifdef RT_USING_SLAB /* init module memory allocator */ module->mem_list = RT_NULL; /* create page array */ module->page_array = (void *)rt_malloc(PAGE_COUNT_MAX * sizeof(struct rt_page_info)); module->page_cnt = 0; #endif /* create module thread */ module->stack_size = 2048; module->thread_priority = 25; module->module_thread = rt_thread_create(name, (void(*)(void *))module->module_entry, RT_NULL, module->stack_size, module->thread_priority, 10); module->module_thread->module_id = (void*)module; module->parent.flag = RT_MODULE_FLAG_WITHENTRY; /* startup module thread */ rt_thread_startup(module->module_thread); } else { /* without entry point */ module->parent.flag |= RT_MODULE_FLAG_WITHOUTENTRY; } #ifdef RT_USING_HOOK if (rt_module_load_hook != RT_NULL) { rt_module_load_hook(module); } #endif return module; } #ifdef RT_USING_DFS #include /** * This function will load a module from a file * * @param path the full path of application module * * @return the module object */ rt_module_t rt_module_open(const char *path) { int fd, length; struct rt_module *module; struct stat s; char *buffer, *offset_ptr; RT_DEBUG_NOT_IN_INTERRUPT; /* check parameters */ RT_ASSERT(path != RT_NULL); if (stat(path, &s) !=0) { rt_kprintf("access %s failed\n", path); return RT_NULL; } buffer = (char *)rt_malloc(s.st_size); if (buffer == RT_NULL) { rt_kprintf("out of memory\n"); return RT_NULL; } offset_ptr = buffer; fd = open(path, O_RDONLY, 0); if (fd < 0) { rt_kprintf("open %s failed\n", path); rt_free(buffer); return RT_NULL; } do { length = read(fd, offset_ptr, 4096); if (length > 0) { offset_ptr += length; } }while (length > 0); /* close fd */ close(fd); if ((rt_uint32_t)offset_ptr - (rt_uint32_t)buffer != s.st_size) { rt_kprintf("check: read file failed\n"); rt_free(buffer); return RT_NULL; } module = rt_module_load(path, (void *)buffer); rt_free(buffer); return module; } #if defined(RT_USING_FINSH) #include FINSH_FUNCTION_EXPORT_ALIAS(rt_module_open, exec, exec module from file); #endif #endif /** * This function will unload a module from memory and release resources * * @param module the module to be unloaded * * @return the operation status, RT_EOK on OK; -RT_ERROR on error */ rt_err_t rt_module_unload(rt_module_t module) { int i; struct rt_object *object; struct rt_list_node *list; RT_DEBUG_NOT_IN_INTERRUPT; /* check parameter */ RT_ASSERT(module != RT_NULL); rt_kprintf("rt_module_unload: %s\n", module->parent.name); /* module has entry point */ if (!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY)) { /* suspend module main thread */ if (module->module_thread != RT_NULL) { if (module->module_thread->stat == RT_THREAD_READY) rt_thread_suspend(module->module_thread); } /* delete threads */ list = &module->module_object[RT_Object_Class_Thread].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_TRUE) { /* detach static object */ rt_thread_detach((rt_thread_t)object); } else { /* delete dynamic object */ rt_thread_delete((rt_thread_t)object); } } #ifdef RT_USING_SEMAPHORE /* delete semaphores */ list = &module->module_object[RT_Object_Class_Thread].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_TRUE) { /* detach static object */ rt_sem_detach((rt_sem_t)object); } else { /* delete dynamic object */ rt_sem_delete((rt_sem_t)object); } } #endif #ifdef RT_USING_MUTEX /* delete mutexs*/ list = &module->module_object[RT_Object_Class_Mutex].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_TRUE) { /* detach static object */ rt_mutex_detach((rt_mutex_t)object); } else { /* delete dynamic object */ rt_mutex_delete((rt_mutex_t)object); } } #endif #ifdef RT_USING_EVENT /* delete mailboxs */ list = &module->module_object[RT_Object_Class_Event].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_TRUE) { /* detach static object */ rt_event_detach((rt_event_t)object); } else { /* delete dynamic object */ rt_event_delete((rt_event_t)object); } } #endif #ifdef RT_USING_MAILBOX /* delete mailboxs */ list = &module->module_object[RT_Object_Class_MailBox].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_TRUE) { /* detach static object */ rt_mb_detach((rt_mailbox_t)object); } else { /* delete dynamic object */ rt_mb_delete((rt_mailbox_t)object); } } #endif #ifdef RT_USING_MESSAGEQUEUE /* delete msgqueues */ list = &module->module_object[RT_Object_Class_MessageQueue].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_TRUE) { /* detach static object */ rt_mq_detach((rt_mq_t)object); } else { /* delete dynamic object */ rt_mq_delete((rt_mq_t)object); } } #endif #ifdef RT_USING_MEMPOOL /* delete mempools */ list = &module->module_object[RT_Object_Class_MemPool].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_TRUE) { /* detach static object */ rt_mp_detach((rt_mp_t)object); } else { /* delete dynamic object */ rt_mp_delete((rt_mp_t)object); } } #endif #ifdef RT_USING_DEVICE /* delete devices */ list = &module->module_object[RT_Object_Class_Device].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); rt_device_unregister((rt_device_t)object); } #endif /* delete timers */ list = &module->module_object[RT_Object_Class_Timer].object_list; while (list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_TRUE) { /* detach static object */ rt_timer_detach((rt_timer_t)object); } else { /* delete dynamic object */ rt_timer_delete((rt_timer_t)object); } } } #ifdef RT_USING_SLAB if (module->page_cnt > 0) { struct rt_page_info *page = (struct rt_page_info *)module->page_array; rt_kprintf("warning: module memory still hasn't been free finished\n"); while(module->page_cnt != 0) { rt_module_free_page(module, page[0].page_ptr, page[0].npage); } } #endif /* release module space memory */ rt_free(module->module_space); /* release module symbol table */ for (i=0; insym; i++) rt_free((void *)module->symtab[i].name); if (module->symtab != RT_NULL) rt_free(module->symtab); #ifdef RT_USING_HOOK if (rt_module_unload_hook != RT_NULL) { rt_module_unload_hook(module); } #endif #ifdef RT_USING_SLAB if(module->page_array != RT_NULL) rt_free(module->page_array); #endif /* delete module object */ rt_object_delete((rt_object_t)module); return RT_EOK; } /** * This function will find the specified module. * * @param name the name of module finding * * @return the module */ rt_module_t rt_module_find(const char *name) { struct rt_object_information *information; struct rt_object *object; struct rt_list_node *node; extern struct rt_object_information rt_object_container[]; RT_DEBUG_NOT_IN_INTERRUPT; /* enter critical */ rt_enter_critical(); /* try to find device object */ information = &rt_object_container[RT_Object_Class_Module]; for (node = information->object_list.next; node != &(information->object_list); node = node->next) { object = rt_list_entry(node, struct rt_object, list); if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0) { /* leave critical */ rt_exit_critical(); return (rt_module_t)object; } } /* leave critical */ rt_exit_critical(); /* not found */ return RT_NULL; } #ifdef RT_USING_SLAB /* * This function will allocate the numbers page with specified size * in page memory. * * @param size the size of memory to be allocated. * @note this function is used for RT-Thread Application Module */ static void *rt_module_malloc_page(rt_size_t npages) { void *chunk; struct rt_page_info *page; chunk = rt_page_alloc(npages); if (chunk == RT_NULL) return RT_NULL; page = (struct rt_page_info *)rt_current_module->page_array; page[rt_current_module->page_cnt].page_ptr = chunk; page[rt_current_module->page_cnt].npage = npages; rt_current_module->page_cnt ++; RT_ASSERT(rt_current_module->page_cnt <= PAGE_COUNT_MAX); rt_kprintf("rt_module_malloc_page 0x%x %d\n", chunk, npages); return chunk; } /* * This function will release the previously allocated memory page * by rt_malloc_page. * * @param page_ptr the page address to be released. * @param npages the number of page shall be released. * * @note this function is used for RT-Thread Application Module */ static void rt_module_free_page(rt_module_t module, void *page_ptr, rt_size_t npages) { int i, index; struct rt_page_info *page; rt_kprintf("rt_module_free_page 0x%x %d\n", page_ptr, npages); rt_page_free(page_ptr, npages); page = (struct rt_page_info*)module->page_array; for(i=0; ipage_cnt; i++) { if (page[i].page_ptr == page_ptr) { if (page[i].npage == npages + 1) { page[i].page_ptr += npages * RT_MM_PAGE_SIZE / sizeof(rt_uint32_t); page[i].npage -= npages; } else if(page[i].npage == npages) { for(index=i; indexpage_cnt-1; index++) { page[index].page_ptr = page[index + 1].page_ptr; page[index].npage = page[index + 1].npage; } page[module->page_cnt - 1].page_ptr = RT_NULL; page[module->page_cnt - 1].npage = 0; module->page_cnt--; } else RT_ASSERT(RT_FALSE); rt_current_module->page_cnt--; return; } } /* should not be get here */ RT_ASSERT(RT_FALSE); } /* rt_module_malloc - allocate memory block in free list */ void *rt_module_malloc(rt_size_t size) { struct rt_mem_head *b, *n, *up; struct rt_mem_head **prev; rt_uint32_t npage; rt_size_t nunits; RT_DEBUG_NOT_IN_INTERRUPT; nunits = (size + sizeof(struct rt_mem_head) -1)/sizeof(struct rt_mem_head) + 1; RT_ASSERT(size != 0); RT_ASSERT(nunits != 0); rt_sem_take(&mod_sem, RT_WAITING_FOREVER); for (prev = (struct rt_mem_head **)&rt_current_module->mem_list; (b = *prev) != RT_NULL; prev = &(b->next)) { if (b->size > nunits) { /* split memory */ n = b + nunits; n->next = b->next; n->size = b->size - nunits; b->size = nunits; *prev = n; rt_kprintf("rt_module_malloc 0x%x, %d\n",b + 1, size); rt_sem_release(&mod_sem); return (void *)(b + 1); } if (b->size == nunits) { /* this node fit, remove this node */ *prev = b->next; rt_kprintf("rt_module_malloc 0x%x, %d\n",b + 1, size); rt_sem_release(&mod_sem); return (void *)(b + 1); } } /* allocate pages from system heap */ npage = (size + sizeof(struct rt_mem_head) + RT_MM_PAGE_SIZE - 1)/RT_MM_PAGE_SIZE; if ((up = (struct rt_mem_head *)rt_module_malloc_page(npage)) == RT_NULL) return RT_NULL; up->size = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head); for (prev = (struct rt_mem_head **)&rt_current_module->mem_list; (b = *prev) != RT_NULL; prev = &(b->next)) { if (b > up + up->size) break; } up->next = b; *prev = up; rt_sem_release(&mod_sem); return rt_module_malloc(size); } /* rt_module_free - free memory block in free list */ void rt_module_free(rt_module_t module, void *addr) { struct rt_mem_head *b, *n, *r; struct rt_mem_head **prev; RT_DEBUG_NOT_IN_INTERRUPT; RT_ASSERT(addr); RT_ASSERT((((rt_uint32_t)addr) & (sizeof(struct rt_mem_head) -1)) == 0); rt_kprintf("rt_module_free 0x%x\n", addr); rt_sem_take(&mod_sem, RT_WAITING_FOREVER); n = (struct rt_mem_head *)addr - 1; prev = (struct rt_mem_head **)&module->mem_list; while ((b = *prev) != RT_NULL) { RT_ASSERT(b->size > 0); RT_ASSERT(b > n || b + b->size <= n); if (b + b->size == n && ((rt_uint32_t)n % RT_MM_PAGE_SIZE != 0)) { if (b + (b->size + n->size) == b->next) { b->size += b->next->size + n->size; b->next = b->next->next; } else b->size += n->size; if ((rt_uint32_t)b % RT_MM_PAGE_SIZE == 0) { int npage = b->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE; if (npage > 0) { if ((b->size * sizeof(struct rt_page_info) % RT_MM_PAGE_SIZE) != 0) { rt_size_t nunits = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head); /* split memory */ r = b + nunits; r->next = b->next; r->size = b->size - nunits; *prev = r; } else { *prev = b->next; } rt_module_free_page(module, b, npage); } } /* unlock */ rt_sem_release(&mod_sem); return; } if (b == n + n->size) { n->size = b->size + n->size; n->next = b->next; if ((rt_uint32_t)n % RT_MM_PAGE_SIZE == 0) { int npage = n->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE; if (npage > 0) { if ((n->size * sizeof(struct rt_page_info) % RT_MM_PAGE_SIZE) != 0) { rt_size_t nunits = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head); /* split memory */ r = n + nunits; r->next = n->next; r->size = n->size - nunits; *prev = r; } else *prev = n->next; rt_module_free_page(module, n, npage); } } else { *prev = n; } /* unlock */ rt_sem_release(&mod_sem); return; } if (b > n + n->size) break; prev = &(b->next); } if ((rt_uint32_t)n % RT_MM_PAGE_SIZE == 0) { int npage = n->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE; if (npage > 0) { rt_module_free_page(module, n, npage); if (n->size % RT_MM_PAGE_SIZE != 0) { rt_size_t nunits = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head); /* split memory */ r = n + nunits; r->next = b; r->size = n->size - nunits; *prev = r; } else { *prev = b; } } } else { n->next = b; *prev = n; } /* unlock */ rt_sem_release(&mod_sem); } /* rt_module_realloc - realloc memory block in free list */ void *rt_module_realloc(void *ptr, rt_size_t size) { struct rt_mem_head *b, *p, *prev, *tmpp; rt_size_t nunits; RT_DEBUG_NOT_IN_INTERRUPT; if (!ptr) return rt_module_malloc(size); if (size == 0) { rt_module_free(rt_current_module, ptr); return RT_NULL; } nunits = (size + sizeof(struct rt_mem_head) - 1) / sizeof(struct rt_mem_head) + 1; b = (struct rt_mem_head *)ptr - 1; if (nunits <= b->size) { /* new size is smaller or equal then before */ if (nunits == b->size) return ptr; else { p = b + nunits; p->size = b->size - nunits; b->size = nunits; rt_module_free(rt_current_module, (void *)(p + 1)); return (void *)(b + 1); } } else { /* more space then required */ prev = (struct rt_mem_head *)rt_current_module->mem_list; for (p = prev->next; p != (b->size + b) && p != RT_NULL; prev = p, p = p->next) break; /* available block after ap in freelist */ if (p != RT_NULL && (p->size >= (nunits - (b->size))) && p == (b + b->size)) { /* perfect match */ if (p->size == (nunits - (b->size))) { b->size = nunits; prev->next = p->next; } else /* more space then required, split block*/ { /* pointer to old header */ tmpp = p; p = b + nunits; /* restoring old pointer */ p->next = tmpp->next; /* new size for p */ p->size = tmpp->size + b->size - nunits; b->size = nunits; prev->next = p; } rt_current_module->mem_list = (void *)prev; return (void *)(b + 1); } else /* allocate new memory and copy old data */ { if ((p = rt_module_malloc(size)) == RT_NULL) return RT_NULL; rt_memmove(p, (b+1), ((b->size) * sizeof(struct rt_mem_head))); rt_module_free(rt_current_module, (void *)(b + 1)); return (void *)(p); } } } #ifdef RT_USING_FINSH #include void list_memlist(const char *name) { rt_module_t module; struct rt_mem_head **prev; struct rt_mem_head *b; module = rt_module_find(name); if (module == RT_NULL) return; for (prev = (struct rt_mem_head **)&module->mem_list; (b = *prev) != RT_NULL; prev = &(b->next)) { rt_kprintf("0x%x--%d\n", b, b->size * sizeof(struct rt_mem_head)); } } FINSH_FUNCTION_EXPORT(list_memlist, list module free memory information) void list_mempage(const char *name) { rt_module_t module; struct rt_page_info *page; int i; module = rt_module_find(name); if (module == RT_NULL) return; page = (struct rt_page_info*)module->page_array; for (i=0; ipage_cnt; i++) { rt_kprintf("0x%x--%d\n", page[i].page_ptr, page[i].npage); } } FINSH_FUNCTION_EXPORT(list_mempage, list module using memory page information) #endif #endif #endif