// ----------------------------------------------------------------------- // This file contains the initial set up configuration for the AM335x. //------------------------------------------------------------------------- __var clk_in; CHGBIT (addr, mask, data) { __var reg; reg = __readMemory32(addr, "Memory"); reg &= ~mask; reg |= data; __writeMemory32(reg, addr, "Memory"); } CLRBIT (addr, mask) { __var reg; reg = __readMemory32(addr, "Memory"); reg &= ~mask; __writeMemory32(reg, addr, "Memory"); } SETBIT (addr, mask) { __var reg; reg = __readMemory32(addr, "Memory"); reg |= mask; __writeMemory32(reg, addr, "Memory"); } TESTBIT (addr, mask) { return(__readMemory32(addr, "Memory") & mask); } get_input_clock_frequency() { __var temp; temp = __readMemory32(((0x44E10000) + 0x40), "Memory"); temp = temp >> 22; temp = temp & 0x3; if(temp == 0) { clk_in = 19; //19.2MHz __message "Input Clock Read from SYSBOOT[15:14]: 19.2MHz\n"; } if(temp == 1) { clk_in = 24; //24MHz __message "Input Clock Read from SYSBOOT[15:14]: 24MHz\n"; } if(temp == 2) { clk_in = 25; //25MHz __message "Input Clock Read from SYSBOOT[15:14]: 25MHz\n"; } if(temp == 3) { clk_in = 26; //26MHz __message "Input Clock Read from SYSBOOT[15:14]: 26MHz\n"; } } mpu_pll_config( clk_in, N, M, M2) { __var ref_clk,clk_out; __var clkmode,clksel,div_m2,idlest_dpll; __var temp,i; ref_clk = clk_in/(N+1); clk_out = (ref_clk*M)/M2; clkmode=__readMemory32((0x44E00000 + 0x488), "Memory"); clksel= __readMemory32((0x44E00000 + 0x42C), "Memory"); div_m2= __readMemory32((0x44E00000 + 0x4A8), "Memory"); __message "**** Going to Bypass... \n"; //put the DPLL in bypass mode __writeMemory32(0x4, (0x44E00000 + 0x488), "Memory"); while(((__readMemory32((0x44E00000 + 0x420), "Memory") & 0x101) != 0x00000100)); //wait for bypass status __message "**** Bypassed, changing values... \n"; //set multiply and divide values clksel = clksel & (~0x7FFFF); clksel = clksel | ((M <<0x8) | N); __writeMemory32(clksel, (0x44E00000 + 0x42C), "Memory"); div_m2 = div_m2 & ~0x1F; div_m2 = div_m2 | M2; __writeMemory32(div_m2, (0x44E00000 + 0x4A8), "Memory"); __message "**** Locking ARM PLL\n"; //now lock the DPLL clkmode = clkmode | 0x7; //enables lock mode __writeMemory32(clkmode, (0x44E00000 + 0x488), "Memory"); while(((__readMemory32((0x44E00000 + 0x420), "Memory") & 0x101) != 0x1)); //wait for lock } core_pll_config( clk_in, N, M, M4, M5, M6) { __var ref_clk,clk_out4,clk_out5,clk_out6; __var clkmode,clksel,div_m4,div_m5,div_m6,idlest_dpll; ref_clk = clk_in/(N+1); clk_out4 = (ref_clk*M)/M4; //M4=200MHz clk_out5 = (ref_clk*M)/M5; //M5=250MHz clk_out6 = (ref_clk*M)/M6; //M6=500MHz clkmode= __readMemory32((0x44E00000 + 0x490), "Memory"); clksel= __readMemory32((0x44E00000 + 0x468), "Memory"); div_m4= __readMemory32((0x44E00000 + 0x480), "Memory"); div_m5= __readMemory32((0x44E00000 + 0x484), "Memory"); div_m6= __readMemory32((0x44E00000 + 0x4D8), "Memory"); //put DPLL in bypass mode clkmode = (clkmode & 0xfffffff8)|0x00000004; __writeMemory32(clkmode, (0x44E00000 + 0x490), "Memory"); while((__readMemory32((0x44E00000 + 0x45C), "Memory") & 0x00000100 )!=0x00000100); //wait for bypass status __message "**** Core Bypassed\n"; //set multiply and divide values clksel = clksel & (~0x7FFFF); clksel = clksel | ((M <<0x8) | N); __writeMemory32(clksel, (0x44E00000 + 0x468), "Memory"); div_m4= M4; //200MHz __writeMemory32(div_m4, (0x44E00000 + 0x480), "Memory"); div_m5= M5; //250MHz __writeMemory32(div_m5, (0x44E00000 + 0x484), "Memory"); div_m6= M6; //500MHz __writeMemory32(div_m6, (0x44E00000 + 0x4D8), "Memory"); __message "**** Now locking Core...\n"; //now lock the PLL clkmode =(clkmode&0xfffffff8)|0x00000007; __writeMemory32(clkmode, (0x44E00000 + 0x490), "Memory"); while((__readMemory32((0x44E00000 + 0x45C), "Memory") & 0x00000001 )!=0x00000001); __message "**** Core locked\n"; } ddr_pll_config( clk_in, N, M, M2) { __var ref_clk,clk_out ; __var clkmode,clksel,div_m2,idlest_dpll; ref_clk = clk_in/(N+1); clk_out = (ref_clk*M)/M2; clkmode=__readMemory32((0x44E00000 + 0x494), "Memory"); clksel= __readMemory32((0x44E00000 + 0x440), "Memory"); div_m2= __readMemory32((0x44E00000 + 0x4A0), "Memory"); clkmode =(clkmode&0xfffffff8)|0x00000004; __writeMemory32(clkmode, (0x44E00000 + 0x494), "Memory"); while((__readMemory32((0x44E00000 + 0x434), "Memory") & 0x00000100 )!=0x00000100); __message "**** DDR DPLL Bypassed\n"; clksel = clksel & (~0x7FFFF); clksel = clksel | ((M <<0x8) | N); __writeMemory32(clksel, (0x44E00000 + 0x440), "Memory"); div_m2 = __readMemory32((0x44E00000 + 0x4A0), "Memory"); div_m2 = (div_m2&0xFFFFFFE0) | M2; __writeMemory32(div_m2, (0x44E00000 + 0x4A0), "Memory"); clkmode =(clkmode&0xfffffff8)|0x00000007; __writeMemory32(clkmode, (0x44E00000 + 0x494), "Memory"); while((__readMemory32((0x44E00000 + 0x434), "Memory") & 0x00000001 )!=0x00000001); __message "**** DDR DPLL Locked\n"; } per_pll_config( clk_in, N, M, M2) { __var ref_clk,clk_out; __var clkmode,clksel,div_m2,idlest_dpll; ref_clk = clk_in/(N+1); clk_out = (ref_clk*M)/M2; clkmode=__readMemory32((0x44E00000 + 0x48C), "Memory"); clksel= __readMemory32((0x44E00000 + 0x49C), "Memory"); div_m2= __readMemory32((0x44E00000 + 0x4AC), "Memory"); clkmode =(clkmode&0xfffffff8)|0x00000004; __writeMemory32(clkmode, (0x44E00000 + 0x48C), "Memory"); while((__readMemory32((0x44E00000 + 0x470), "Memory") & 0x00000100 )!=0x00000100); __message "**** PER DPLL Bypassed\n"; clksel = clksel & (~0x7FFFF); clksel = clksel | ((M <<0x8) | N); __writeMemory32(clksel, (0x44E00000 + 0x49C), "Memory"); div_m2= 0xFFFFFF80 | M2; __writeMemory32(div_m2, (0x44E00000 + 0x4AC), "Memory"); clkmode =(clkmode&0xfffffff8)|0x00000007; __writeMemory32(clkmode,(0x44E00000 + 0x48C), "Memory"); while((__readMemory32((0x44E00000 + 0x470), "Memory") & 0x00000001 )!=0x00000001); __message "**** PER DPLL Locked\n"; } disp_pll_config( clk_in, N, M, M2) { __var ref_clk,clk_out; __var clkmode,clksel,div_m2,idlest_dpll; __message "**** DISP PLL Config is in progress .......... \n"; ref_clk = clk_in/(N+1); clk_out = (ref_clk*M)/M2; clkmode=__readMemory32((0x44E00000 + 0x498), "Memory"); clksel= __readMemory32((0x44E00000 + 0x454), "Memory"); div_m2= __readMemory32((0x44E00000 + 0x4A4), "Memory"); clkmode =(clkmode&0xfffffff8)|0x00000004; __writeMemory32(clkmode, (0x44E00000 + 0x498), "Memory"); while((__readMemory32((0x44E00000 + 0x448), "Memory") & 0x00000100 )!=0x00000100); clksel = clksel & (~0x7FFFF); clksel = clksel | ((M <<0x8) | N); __writeMemory32(clksel, (0x44E00000 + 0x454), "Memory"); div_m2= 0xFFFFFFE0 | M2; __writeMemory32(div_m2, (0x44E00000 + 0x4A4), "Memory"); clkmode =(clkmode&0xfffffff8)|0x00000007; __writeMemory32(clkmode, (0x44E00000 + 0x498), "Memory"); while((__readMemory32((0x44E00000 + 0x448), "Memory") & 0x00000001 )!=0x00000001); __message "**** DISP PLL Config is DONE .......... \n"; } arm_opp120_config() { __message "**** Subarctic ALL ADPLL Config for OPP == OPP100 is In Progress ......... \n"; get_input_clock_frequency(); if (clk_in == 24) { mpu_pll_config(clk_in, 23, 550, 1); core_pll_config(clk_in, 23, 1000, 10, 8, 4); ddr_pll_config(clk_in, 23, 303, 1); per_pll_config(clk_in, 23, 960, 5); disp_pll_config(clk_in, 23, 48, 1); __message "**** Subarctic ALL ADPLL Config for OPP == OPP100 is Done ......... \n"; } else { __message "**** Subarctic PLL Config failed!! Check SYSBOOT[15:14] for proper input freq config \n"; } } emif_prcm_clk_enable() { __message "EMIF PRCM is in progress ....... \n"; __writeMemory32(0x2, (0x44E00000 + 0x0D0), "Memory"); __writeMemory32(0x2, (0x44E00000 + 0x028), "Memory"); while(__readMemory32((0x44E00000 + 0x028), "Memory")!= 0x02); __message "EMIF PRCM Done \n"; } vtp_enable() { /* Write 1 to enable VTP */ __writeMemory32((__readMemory32(((0x44E10000) + 0x0E0C), "Memory") | 0x00000040),((0x44E10000) + 0x0E0C) , "Memory"); /* Write 0 to CLRZ bit */ __writeMemory32((__readMemory32(((0x44E10000) + 0x0E0C), "Memory") & 0xFFFFFFFE),((0x44E10000) + 0x0E0C) ,"Memory"); /* Write 1 to CLRZ bit */ __writeMemory32((__readMemory32(((0x44E10000) + 0x0E0C), "Memory") | 0x00000001),((0x44E10000) + 0x0E0C) , "Memory"); __message "Waiting for VTP Ready .......\n"; while((__readMemory32(((0x44E10000) + 0x0E0C), "Memory") & 0x00000020) != 0x00000020); __message "VTP Enable Done \n"; } cmd_macro_config( REG_PHY_CTRL_SLAVE_RATIO_value, CMD_REG_PHY_CTRL_SLAVE_FORCE_value, CMD_REG_PHY_CTRL_SLAVE_DELAY_value, PHY_DLL_LOCK_DIFF_value, CMD_PHY_INVERT_CLKOUT_value) { __message "\DDR PHY CMD0 Register configuration is in progress ....... \n"; __writeMemory32(REG_PHY_CTRL_SLAVE_RATIO_value, (0x01C + (0x44E12000)), "Memory"); __writeMemory32(CMD_REG_PHY_CTRL_SLAVE_FORCE_value, (0x020 + (0x44E12000)), "Memory"); __writeMemory32(CMD_REG_PHY_CTRL_SLAVE_DELAY_value, (0x024 + (0x44E12000)), "Memory"); __writeMemory32(PHY_DLL_LOCK_DIFF_value, (0x028 + (0x44E12000)), "Memory"); __writeMemory32(CMD_PHY_INVERT_CLKOUT_value, (0x02C + (0x44E12000)), "Memory"); __message "\DDR PHY CMD1 Register configuration is in progress ....... \n"; __writeMemory32(REG_PHY_CTRL_SLAVE_RATIO_value, (0x050 + (0x44E12000)), "Memory"); __writeMemory32(CMD_REG_PHY_CTRL_SLAVE_FORCE_value, (0x054 + (0x44E12000)), "Memory"); __writeMemory32(CMD_REG_PHY_CTRL_SLAVE_DELAY_value, (0x058 + (0x44E12000)), "Memory"); __writeMemory32(PHY_DLL_LOCK_DIFF_value, (0x05C + (0x44E12000)), "Memory"); __writeMemory32(CMD_PHY_INVERT_CLKOUT_value, (0x060 + (0x44E12000)), "Memory"); __message "\DDR PHY CMD2 Register configuration is in progress ....... \n"; __writeMemory32(REG_PHY_CTRL_SLAVE_RATIO_value, (0x084 + (0x44E12000)), "Memory"); __writeMemory32(CMD_REG_PHY_CTRL_SLAVE_FORCE_value, (0x088 + (0x44E12000)), "Memory"); __writeMemory32(CMD_REG_PHY_CTRL_SLAVE_DELAY_value, (0x08C + (0x44E12000)), "Memory"); __writeMemory32(PHY_DLL_LOCK_DIFF_value, (0x090 + (0x44E12000)), "Memory"); __writeMemory32(CMD_PHY_INVERT_CLKOUT_value, (0x094 + (0x44E12000)), "Memory"); } data_macro_config( dataMacroNum, PHY_RD_DQS_SLAVE_RATIO_value, PHY_WR_DQS_SLAVE_RATIO_value, REG_PHY_WRLVL_INIT_RATIO_value, REG_PHY_GATELVL_INIT_RATIO_value, REG_PHY_FIFO_WE_SLAVE_RATIO_value, REG_PHY_WR_DATA_SLAVE_RATIO_value) { __var offset; if(dataMacroNum == 0) { offset = 0x00; __message "DDR PHY DATA0 Register configuration is in progress ....... \n"; } else if(dataMacroNum == 1) { offset = 0xA4; __message "DDR PHY DATA1 Register configuration is in progress ....... \n"; } __writeMemory32(((PHY_RD_DQS_SLAVE_RATIO_value<<30)|(PHY_RD_DQS_SLAVE_RATIO_value<<20)|(PHY_RD_DQS_SLAVE_RATIO_value<<10)|(PHY_RD_DQS_SLAVE_RATIO_value<<0)), ((0x0C8 + (0x44E12000)) + offset), "Memory"); __writeMemory32(PHY_RD_DQS_SLAVE_RATIO_value>>2, ((0x0CC + (0x44E12000)) + offset), "Memory"); __writeMemory32(((PHY_WR_DQS_SLAVE_RATIO_value<<30)|(PHY_WR_DQS_SLAVE_RATIO_value<<20)|(PHY_WR_DQS_SLAVE_RATIO_value<<10)|(PHY_WR_DQS_SLAVE_RATIO_value<<0)), ((0x0DC + (0x44E12000)) + offset), "Memory"); __writeMemory32(PHY_WR_DQS_SLAVE_RATIO_value>>2, ((0x0E0 + (0x44E12000)) + offset), "Memory"); __writeMemory32(((REG_PHY_WRLVL_INIT_RATIO_value<<30)|(REG_PHY_WRLVL_INIT_RATIO_value<<20)|(REG_PHY_WRLVL_INIT_RATIO_value<<10)|(REG_PHY_WRLVL_INIT_RATIO_value<<0)), ((0x0F0 + (0x44E12000)) + offset), "Memory"); __writeMemory32(REG_PHY_WRLVL_INIT_RATIO_value>>2, ((0x0F4 + (0x44E12000)) + offset), "Memory"); __writeMemory32(((REG_PHY_GATELVL_INIT_RATIO_value<<30)|(REG_PHY_GATELVL_INIT_RATIO_value<<20)|(REG_PHY_GATELVL_INIT_RATIO_value<<10)|(REG_PHY_GATELVL_INIT_RATIO_value<<0)), ((0x0FC + (0x44E12000)) + offset), "Memory"); __writeMemory32(REG_PHY_GATELVL_INIT_RATIO_value>>2, ((0x100 + (0x44E12000)) + offset), "Memory"); __writeMemory32(((REG_PHY_FIFO_WE_SLAVE_RATIO_value<<30)|(REG_PHY_FIFO_WE_SLAVE_RATIO_value<<20)|(REG_PHY_FIFO_WE_SLAVE_RATIO_value<<10)|(REG_PHY_FIFO_WE_SLAVE_RATIO_value<<0)), ((0x108 + (0x44E12000)) + offset), "Memory"); __writeMemory32(REG_PHY_FIFO_WE_SLAVE_RATIO_value>>2,((0x10C + (0x44E12000)) + offset), "Memory"); __writeMemory32(((REG_PHY_WR_DATA_SLAVE_RATIO_value<<30)|(REG_PHY_WR_DATA_SLAVE_RATIO_value<<20)|(REG_PHY_WR_DATA_SLAVE_RATIO_value<<10)|(REG_PHY_WR_DATA_SLAVE_RATIO_value<<0)),((0x120 + (0x44E12000)) + offset), "Memory"); __writeMemory32(REG_PHY_WR_DATA_SLAVE_RATIO_value>>2, ((0x124 + (0x44E12000)) + offset), "Memory"); __writeMemory32(0x0,((0x138 + (0x44E12000)) + offset), "Memory"); } emif_mmr_config( Read_Latency, Timing1, Timing2, Timing3, Sdram_Config, Ref_Ctrl) { __var i; __message "emif Timing register configuration is in progress ....... \n"; __writeMemory32(Read_Latency, (0x4C000000 + 0x0E4), "Memory"); __writeMemory32(Read_Latency, (0x4C000000 + 0x0E8), "Memory"); __writeMemory32(Read_Latency, (0x4C000000 + 0x0EC), "Memory"); __writeMemory32(Timing1, (0x4C000000 + 0x018), "Memory"); __writeMemory32(Timing1, (0x4C000000 + 0x01C), "Memory"); __writeMemory32(Timing2, (0x4C000000 + 0x020), "Memory"); __writeMemory32(Timing2, (0x4C000000 + 0x024), "Memory"); __writeMemory32(Timing3, (0x4C000000 + 0x028), "Memory"); __writeMemory32(Timing3, (0x4C000000 + 0x02C), "Memory"); __writeMemory32(Sdram_Config, (0x4C000000 + 0x008), "Memory"); __writeMemory32(Sdram_Config, (0x4C000000 + 0x00C), "Memory"); __writeMemory32(0x00004650, (0x4C000000 + 0x010), "Memory"); __writeMemory32(0x00004650, (0x4C000000 + 0x014), "Memory"); for(i=0;i<5000;i++) { } __writeMemory32(Ref_Ctrl, (0x4C000000 + 0x010), "Memory"); __writeMemory32(Ref_Ctrl, (0x4C000000 + 0x014), "Memory"); __writeMemory32(Sdram_Config, (0x4C000000 + 0x008), "Memory"); __writeMemory32(Sdram_Config, (0x4C000000 + 0x00C), "Memory"); __message "emif Timing register configuration is done ....... \n"; } gpio_module_clk_config() { __var buff; buff = __readMemory32((0x400 + 0x44E00000 + 0x8), "Memory"); buff |= 0x2; __writeMemory32(buff, (0x400 + 0x44E00000 + 0x8), "Memory"); while((__readMemory32((0x400 + 0x44E00000 + 0x8), "Memory") & 0x3) != 0x2); buff = __readMemory32((0x400 + 0x44E00000 + 0x8), "Memory"); buff |= 0x00040000; __writeMemory32(buff, (0x400 + 0x44E00000 + 0x8), "Memory"); while((__readMemory32((0x400 + 0x44E00000 + 0x8), "Memory") & 0x00040000) != 0x00040000); while((__readMemory32((0x400 + 0x44E00000 + 0x8), "Memory") & 0x00030000) != 0x0); while((__readMemory32((0x400 + 0x44E00000), "Memory") & 0x00000100) != 0x00000100); __message "GPIO module clock configuration is done ....... \n"; } phy_config_cmd() { __var i; for(i = 0; i < 3; i++) { __message "DDR PHY CMD Register configuration is in progress ....... \n"; __writeMemory32(0x40, ((0x44E12000 + 0x01c) + (i * 0x34)), "Memory"); __writeMemory32(0x1, ((0x44E12000 + 0x02c) + (i * 0x34)), "Memory"); } } phy_config_data() { __var i; for(i = 0; i < 2; i++) { __message "DDR PHY Data Register configuration is in progress ....... \n"; __writeMemory32(0x3B, ((0x44E12000 + 0x0c8) + (i * 0xA4)), "Memory"); __writeMemory32(0x85, ((0x44E12000 + 0x0DC) + (i * 0xA4)), "Memory"); __writeMemory32(0x100, ((0x44E12000 + 0x108) + (i * 0xA4)), "Memory"); __writeMemory32(0xC1, ((0x44E12000 + 0x120) + (i * 0xA4)), "Memory"); } } ddr3_emif_config() { __message "**** AM335x OPP120 DDR3 EMIF and PHY configuration is in progress......... \n"; emif_prcm_clk_enable(); __message "DDR PHY Configuration In progress \n"; /* Perform GPIO module clock configuration. */ gpio_module_clk_config(); __writeMemory32(0x00000067, (0x44E10000 + 0x964), "Memory"); __writeMemory32((__readMemory32((0x44E07000 + 0x130), "Memory") & 0xFFFFFFFE), (0x44E07000 + 0x130), "Memory"); __writeMemory32((__readMemory32((0x44E07000 + 0x10), "Memory") | 0x02), (0x44E07000 + 0x10), "Memory"); /* Wait until GPIO module is reset. */ while(!(__readMemory32((0x44E07000 + 0x114), "Memory") & 0x01)); __writeMemory32((__readMemory32((0x44E07000 + 0x134), "Memory") & ~(1 << 7)), (0x44E07000 + 0x134), "Memory"); __writeMemory32((1 << 7), (0x44E07000 + 0x194), "Memory"); __writeMemory32((__readMemory32((0x44E10000 + 0x0E0C), "Memory") & 0xFFFFFFFE), (0x44E10000 + 0x0E0C), "Memory"); __writeMemory32((__readMemory32((0x44E10000 + 0x0E0C), "Memory") | 0x00000001), (0x44E10000 + 0x0E0C), "Memory"); vtp_enable(); phy_config_cmd(); phy_config_data(); __writeMemory32(0x18B, (0x1404 + 0x44E10000), "Memory"); __writeMemory32(0x18B, (0x1408 + 0x44E10000), "Memory"); __writeMemory32(0x18B, (0x140C + 0x44E10000), "Memory"); __writeMemory32(0x18B, (0x1440 + 0x44E10000), "Memory"); __writeMemory32(0x18B, (0x1444 + 0x44E10000), "Memory"); __writeMemory32((__readMemory32((0x0E04 + 0x44E10000), "Memory") & ~0x10000000), (0x0E04 + 0x44E10000), "Memory"); __writeMemory32((__readMemory32((0x131C + 0x44E10000), "Memory") | 0x00000001), (0x131C + 0x44E10000), "Memory"); __message "EMIF Timing register configuration is in progress ....... \n"; __writeMemory32(0x06, (0x0E4 + 0x4C000000), "Memory"); __writeMemory32(0x06, (0x0E8 + 0x4C000000), "Memory"); __writeMemory32(0x06, (0x0EC + 0x4C000000), "Memory"); __writeMemory32(0x0888A39B, (0x018 + 0x4C000000), "Memory"); __writeMemory32(0x0888A39B, (0x01C + 0x4C000000), "Memory"); __writeMemory32(0x26337FDA, (0x020 + 0x4C000000), "Memory"); __writeMemory32(0x26337FDA, (0x024 + 0x4C000000), "Memory"); __writeMemory32(0x501F830F, (0x028 + 0x4C000000), "Memory"); __writeMemory32(0x501F830F, (0x02C + 0x4C000000), "Memory"); __writeMemory32(0x0000093B, (0x010 + 0x4C000000), "Memory"); __writeMemory32(0x0000093B, (0x014 + 0x4C000000), "Memory"); __writeMemory32(0x50074BE4, (0x0C8 + 0x4C000000), "Memory"); __writeMemory32(0x61C04AB2, (0x008 + 0x4C000000), "Memory"); __message "EMIF Timing register configuration is done ....... \n"; if((__readMemory32((0x4C000000 + 0x004), "Memory") & 0x4) == 0x4) { __message "PHY is READY!!\n"; } __message "DDR PHY Configuration done \n"; __message "**** AM335x OPP120 DDR3 EMIF and PHY configuration is done......... \n"; } am335x_evm_initialization() { __var psc_base; __var reg; __var module_offest; __message " AM335x EVM-SK Initialization is in progress .......... \n"; arm_opp120_config(); ddr3_emif_config(); __message " AM335x EVM-SK Initialization is done .......... \n"; } execUserPreload() { am335x_evm_initialization(); }