/* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "trace.h" #include #include #include #include #include #include #include #include #include #include #ifdef REQUIRES_VIRT __asm__(".arch_extension virt"); #endif static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); static struct vfp_hard_struct __percpu *kvm_host_vfp_state; static unsigned long hyp_default_vectors; int kvm_arch_hardware_enable(void *garbage) { return 0; } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; } void kvm_arch_hardware_disable(void *garbage) { } int kvm_arch_hardware_setup(void) { return 0; } void kvm_arch_hardware_unsetup(void) { } void kvm_arch_check_processor_compat(void *rtn) { *(int *)rtn = 0; } void kvm_arch_sync_events(struct kvm *kvm) { } int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { if (type) return -EINVAL; return 0; } int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } void kvm_arch_free_memslot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { } int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) { return 0; } void kvm_arch_destroy_vm(struct kvm *kvm) { int i; for (i = 0; i < KVM_MAX_VCPUS; ++i) { if (kvm->vcpus[i]) { kvm_arch_vcpu_free(kvm->vcpus[i]); kvm->vcpus[i] = NULL; } } } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { case KVM_CAP_USER_MEMORY: case KVM_CAP_SYNC_MMU: case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: case KVM_CAP_ONE_REG: r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; case KVM_CAP_NR_VCPUS: r = num_online_cpus(); break; case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -EINVAL; } int kvm_arch_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { return 0; } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_memory_slot old, struct kvm_userspace_memory_region *mem, int user_alloc) { return 0; } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { } void kvm_arch_flush_shadow_all(struct kvm *kvm) { } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { int err; struct kvm_vcpu *vcpu; vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu) { err = -ENOMEM; goto out; } err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_vcpu; return vcpu; free_vcpu: kmem_cache_free(kvm_vcpu_cache, vcpu); out: return ERR_PTR(err); } int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) { return 0; } void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { kvm_arch_vcpu_free(vcpu); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return 0; } int __attribute_const__ kvm_target_cpu(void) { unsigned long implementor = read_cpuid_implementor(); unsigned long part_number = read_cpuid_part_number(); if (implementor != ARM_CPU_IMP_ARM) return -EINVAL; switch (part_number) { case ARM_CPU_PART_CORTEX_A15: return KVM_ARM_TARGET_CORTEX_A15; default: return -EINVAL; } } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { return 0; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { return -EINVAL; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) { return 0; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) { return -EINVAL; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; switch (ioctl) { case KVM_ARM_VCPU_INIT: { struct kvm_vcpu_init init; if (copy_from_user(&init, argp, sizeof(init))) return -EFAULT; return kvm_vcpu_set_target(vcpu, &init); } case KVM_SET_ONE_REG: case KVM_GET_ONE_REG: { struct kvm_one_reg reg; if (copy_from_user(®, argp, sizeof(reg))) return -EFAULT; if (ioctl == KVM_SET_ONE_REG) return kvm_arm_set_reg(vcpu, ®); else return kvm_arm_get_reg(vcpu, ®); } case KVM_GET_REG_LIST: { struct kvm_reg_list __user *user_list = argp; struct kvm_reg_list reg_list; unsigned n; if (copy_from_user(®_list, user_list, sizeof(reg_list))) return -EFAULT; n = reg_list.n; reg_list.n = kvm_arm_num_regs(vcpu); if (copy_to_user(user_list, ®_list, sizeof(reg_list))) return -EFAULT; if (n < reg_list.n) return -E2BIG; return kvm_arm_copy_reg_indices(vcpu, user_list->reg); } default: return -EINVAL; } } int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { return -EINVAL; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -EINVAL; } static void cpu_init_hyp_mode(void *vector) { unsigned long long pgd_ptr; unsigned long pgd_low, pgd_high; unsigned long hyp_stack_ptr; unsigned long stack_page; unsigned long vector_ptr; /* Switch from the HYP stub to our own HYP init vector */ __hyp_set_vectors((unsigned long)vector); pgd_ptr = (unsigned long long)kvm_mmu_get_httbr(); pgd_low = (pgd_ptr & ((1ULL << 32) - 1)); pgd_high = (pgd_ptr >> 32ULL); stack_page = __get_cpu_var(kvm_arm_hyp_stack_page); hyp_stack_ptr = stack_page + PAGE_SIZE; vector_ptr = (unsigned long)__kvm_hyp_vector; /* * Call initialization code, and switch to the full blown * HYP code. The init code doesn't need to preserve these registers as * r1-r3 and r12 are already callee save according to the AAPCS. * Note that we slightly misuse the prototype by casing the pgd_low to * a void *. */ kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr); } /** * Inits Hyp-mode on all online CPUs */ static int init_hyp_mode(void) { phys_addr_t init_phys_addr; int cpu; int err = 0; /* * Allocate Hyp PGD and setup Hyp identity mapping */ err = kvm_mmu_init(); if (err) goto out_err; /* * It is probably enough to obtain the default on one * CPU. It's unlikely to be different on the others. */ hyp_default_vectors = __hyp_get_vectors(); /* * Allocate stack pages for Hypervisor-mode */ for_each_possible_cpu(cpu) { unsigned long stack_page; stack_page = __get_free_page(GFP_KERNEL); if (!stack_page) { err = -ENOMEM; goto out_free_stack_pages; } per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; } /* * Execute the init code on each CPU. * * Note: The stack is not mapped yet, so don't do anything else than * initializing the hypervisor mode on each CPU using a local stack * space for temporary storage. */ init_phys_addr = virt_to_phys(__kvm_hyp_init); for_each_online_cpu(cpu) { smp_call_function_single(cpu, cpu_init_hyp_mode, (void *)(long)init_phys_addr, 1); } /* * Unmap the identity mapping */ kvm_clear_hyp_idmap(); /* * Map the Hyp-code called directly from the host */ err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end); if (err) { kvm_err("Cannot map world-switch code\n"); goto out_free_mappings; } /* * Map the Hyp stack pages */ for_each_possible_cpu(cpu) { char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE); if (err) { kvm_err("Cannot map hyp stack\n"); goto out_free_mappings; } } /* * Map the host VFP structures */ kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct); if (!kvm_host_vfp_state) { err = -ENOMEM; kvm_err("Cannot allocate host VFP state\n"); goto out_free_mappings; } for_each_possible_cpu(cpu) { struct vfp_hard_struct *vfp; vfp = per_cpu_ptr(kvm_host_vfp_state, cpu); err = create_hyp_mappings(vfp, vfp + 1); if (err) { kvm_err("Cannot map host VFP state: %d\n", err); goto out_free_vfp; } } kvm_info("Hyp mode initialized successfully\n"); return 0; out_free_vfp: free_percpu(kvm_host_vfp_state); out_free_mappings: free_hyp_pmds(); out_free_stack_pages: for_each_possible_cpu(cpu) free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); out_err: kvm_err("error initializing Hyp mode: %d\n", err); return err; } /** * Initialize Hyp-mode and memory mappings on all CPUs. */ int kvm_arch_init(void *opaque) { int err; if (!is_hyp_mode_available()) { kvm_err("HYP mode not available\n"); return -ENODEV; } if (kvm_target_cpu() < 0) { kvm_err("Target CPU not supported!\n"); return -ENODEV; } err = init_hyp_mode(); if (err) goto out_err; return 0; out_err: return err; } /* NOP: Compiling as a module not supported */ void kvm_arch_exit(void) { } static int arm_init(void) { int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); return rc; } module_init(arm_init);