提交 f2ebf92c 编写于 作者: B Ben Williamson 提交者: Greg Kroah-Hartman

USB: gmidi: New USB MIDI Gadget class driver.

This driver is glue between the USB gadget interface
and the ALSA MIDI interface. It allows us to appear
as a MIDI Streaming device to a host system on the
other end of a USB cable.

This includes linux/usb/audio.h and linux/usb/midi.h
containing definitions from the relevant USB specifications
for USB audio and USB MIDI devices.

The following changes have been made since the first RFC
posting:

* Bug fixes to endpoint handling.
* Workaround for USB_REQ_SET_CONFIGURATION handling,
  not understood yet.
* Added SND and SND_RAWMIDI dependencies in Kconfig.
* Moved usb_audio.h and usb_midi.h to usb/*.h
* Added module parameters for ALSA card index and id.
* Added module parameters for USB descriptor IDs and strings.
* Removed some unneeded stuff inherited from zero.c, more to go.
* Provide DECLARE_* macros for the variable-length structs.
* Use kmalloc instead of usb_ep_alloc_buffer.
* Limit source to 80 columns.
* Return actual error code instead of -ENOMEM in a few places.
Signed-off-by: NBen Williamson <ben.williamson@greyinnovation.com>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
上级 ba307f58
......@@ -404,6 +404,20 @@ config USB_G_SERIAL
which includes instructions and a "driver info file" needed to
make MS-Windows work with this driver.
config USB_MIDI_GADGET
tristate "MIDI Gadget (EXPERIMENTAL)"
depends on SND && EXPERIMENTAL
select SND_RAWMIDI
help
The MIDI Gadget acts as a USB Audio device, with one MIDI
input and one MIDI output. These MIDI jacks appear as
a sound "card" in the ALSA sound system. Other MIDI
connections can then be made on the gadget system, using
ALSA's aconnect utility etc.
Say "y" to link the driver statically, or "m" to build a
dynamically linked module called "g_midi".
# put drivers that need isochronous transfer support (for audio
# or video class gadget drivers), or specific hardware, here.
......
......@@ -15,6 +15,7 @@ obj-$(CONFIG_USB_AT91) += at91_udc.o
g_zero-objs := zero.o usbstring.o config.o epautoconf.o
g_ether-objs := ether.o usbstring.o config.o epautoconf.o
g_serial-objs := serial.o usbstring.o config.o epautoconf.o
g_midi-objs := gmidi.o usbstring.o config.o epautoconf.o
gadgetfs-objs := inode.o
g_file_storage-objs := file_storage.o usbstring.o config.o \
epautoconf.o
......@@ -28,4 +29,5 @@ obj-$(CONFIG_USB_ETH) += g_ether.o
obj-$(CONFIG_USB_GADGETFS) += gadgetfs.o
obj-$(CONFIG_USB_FILE_STORAGE) += g_file_storage.o
obj-$(CONFIG_USB_G_SERIAL) += g_serial.o
obj-$(CONFIG_USB_MIDI_GADGET) += g_midi.o
/*
* gmidi.c -- USB MIDI Gadget Driver
*
* Copyright (C) 2006 Thumtronics Pty Ltd.
* Developed for Thumtronics by Grey Innovation
* Ben Williamson <ben.williamson@greyinnovation.com>
*
* This software is distributed under the terms of the GNU General Public
* License ("GPL") version 2, as published by the Free Software Foundation.
*
* This code is based in part on:
*
* Gadget Zero driver, Copyright (C) 2003-2004 David Brownell.
* USB Audio driver, Copyright (C) 2002 by Takashi Iwai.
* USB MIDI driver, Copyright (C) 2002-2005 Clemens Ladisch.
*
* Refer to the USB Device Class Definition for MIDI Devices:
* http://www.usb.org/developers/devclass_docs/midi10.pdf
*/
#define DEBUG 1
// #define VERBOSE
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/utsname.h>
#include <linux/device.h>
#include <linux/moduleparam.h>
#include <sound/driver.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/rawmidi.h>
#include <linux/usb_ch9.h>
#include <linux/usb_gadget.h>
#include <linux/usb/audio.h>
#include <linux/usb/midi.h>
#include "gadget_chips.h"
MODULE_AUTHOR("Ben Williamson");
MODULE_LICENSE("GPL v2");
#define DRIVER_VERSION "25 Jul 2006"
static const char shortname[] = "g_midi";
static const char longname[] = "MIDI Gadget";
static int index = SNDRV_DEFAULT_IDX1;
static char *id = SNDRV_DEFAULT_STR1;
module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for the USB MIDI Gadget adapter.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for the USB MIDI Gadget adapter.");
/* Some systems will want different product identifers published in the
* device descriptor, either numbers or strings or both. These string
* parameters are in UTF-8 (superset of ASCII's 7 bit characters).
*/
static ushort idVendor;
module_param(idVendor, ushort, S_IRUGO);
MODULE_PARM_DESC(idVendor, "USB Vendor ID");
static ushort idProduct;
module_param(idProduct, ushort, S_IRUGO);
MODULE_PARM_DESC(idProduct, "USB Product ID");
static ushort bcdDevice;
module_param(bcdDevice, ushort, S_IRUGO);
MODULE_PARM_DESC(bcdDevice, "USB Device version (BCD)");
static char *iManufacturer;
module_param(iManufacturer, charp, S_IRUGO);
MODULE_PARM_DESC(iManufacturer, "USB Manufacturer string");
static char *iProduct;
module_param(iProduct, charp, S_IRUGO);
MODULE_PARM_DESC(iProduct, "USB Product string");
static char *iSerialNumber;
module_param(iSerialNumber, charp, S_IRUGO);
MODULE_PARM_DESC(iSerialNumber, "SerialNumber");
/*
* this version autoconfigures as much as possible,
* which is reasonable for most "bulk-only" drivers.
*/
static const char *EP_IN_NAME;
static const char *EP_OUT_NAME;
/* big enough to hold our biggest descriptor */
#define USB_BUFSIZ 256
/* This is a gadget, and the IN/OUT naming is from the host's perspective.
USB -> OUT endpoint -> rawmidi
USB <- IN endpoint <- rawmidi */
struct gmidi_in_port {
struct gmidi_device* dev;
int active;
uint8_t cable; /* cable number << 4 */
uint8_t state;
#define STATE_UNKNOWN 0
#define STATE_1PARAM 1
#define STATE_2PARAM_1 2
#define STATE_2PARAM_2 3
#define STATE_SYSEX_0 4
#define STATE_SYSEX_1 5
#define STATE_SYSEX_2 6
uint8_t data[2];
};
struct gmidi_device {
spinlock_t lock;
struct usb_gadget *gadget;
struct usb_request *req; /* for control responses */
u8 config;
struct usb_ep *in_ep, *out_ep;
struct snd_card *card;
struct snd_rawmidi *rmidi;
struct snd_rawmidi_substream *in_substream;
struct snd_rawmidi_substream *out_substream;
/* For the moment we only support one port in
each direction, but in_port is kept as a
separate struct so we can have more later. */
struct gmidi_in_port in_port;
unsigned long out_triggered;
struct tasklet_struct tasklet;
};
static void gmidi_transmit(struct gmidi_device* dev, struct usb_request* req);
#define xprintk(d,level,fmt,args...) \
dev_printk(level , &(d)->gadget->dev , fmt , ## args)
#ifdef DEBUG
#define DBG(dev,fmt,args...) \
xprintk(dev , KERN_DEBUG , fmt , ## args)
#else
#define DBG(dev,fmt,args...) \
do { } while (0)
#endif /* DEBUG */
#ifdef VERBOSE
#define VDBG DBG
#else
#define VDBG(dev,fmt,args...) \
do { } while (0)
#endif /* VERBOSE */
#define ERROR(dev,fmt,args...) \
xprintk(dev , KERN_ERR , fmt , ## args)
#define WARN(dev,fmt,args...) \
xprintk(dev , KERN_WARNING , fmt , ## args)
#define INFO(dev,fmt,args...) \
xprintk(dev , KERN_INFO , fmt , ## args)
static unsigned buflen = 256;
static unsigned qlen = 32;
module_param(buflen, uint, S_IRUGO);
module_param(qlen, uint, S_IRUGO);
/* Thanks to Grey Innovation for donating this product ID.
*
* DO NOT REUSE THESE IDs with a protocol-incompatible driver!! Ever!!
* Instead: allocate your own, using normal USB-IF procedures.
*/
#define DRIVER_VENDOR_NUM 0x17b3 /* Grey Innovation */
#define DRIVER_PRODUCT_NUM 0x0004 /* Linux-USB "MIDI Gadget" */
/*
* DESCRIPTORS ... most are static, but strings and (full)
* configuration descriptors are built on demand.
*/
#define STRING_MANUFACTURER 25
#define STRING_PRODUCT 42
#define STRING_SERIAL 101
#define STRING_MIDI_GADGET 250
/* We only have the one configuration, it's number 1. */
#define GMIDI_CONFIG 1
/* We have two interfaces- AudioControl and MIDIStreaming */
#define GMIDI_AC_INTERFACE 0
#define GMIDI_MS_INTERFACE 1
#define GMIDI_NUM_INTERFACES 2
DECLARE_USB_AC_HEADER_DESCRIPTOR(1);
DECLARE_USB_MIDI_OUT_JACK_DESCRIPTOR(1);
DECLARE_USB_MS_ENDPOINT_DESCRIPTOR(1);
/* B.1 Device Descriptor */
static struct usb_device_descriptor device_desc = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = __constant_cpu_to_le16(0x0200),
.bDeviceClass = USB_CLASS_PER_INTERFACE,
.idVendor = __constant_cpu_to_le16(DRIVER_VENDOR_NUM),
.idProduct = __constant_cpu_to_le16(DRIVER_PRODUCT_NUM),
.iManufacturer = STRING_MANUFACTURER,
.iProduct = STRING_PRODUCT,
.bNumConfigurations = 1,
};
/* B.2 Configuration Descriptor */
static struct usb_config_descriptor config_desc = {
.bLength = USB_DT_CONFIG_SIZE,
.bDescriptorType = USB_DT_CONFIG,
/* compute wTotalLength on the fly */
.bNumInterfaces = GMIDI_NUM_INTERFACES,
.bConfigurationValue = GMIDI_CONFIG,
.iConfiguration = STRING_MIDI_GADGET,
/*
* FIXME: When embedding this driver in a device,
* these need to be set to reflect the actual
* power properties of the device. Is it selfpowered?
*/
.bmAttributes = USB_CONFIG_ATT_ONE,
.bMaxPower = 1,
};
/* B.3.1 Standard AC Interface Descriptor */
static const struct usb_interface_descriptor ac_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = GMIDI_AC_INTERFACE,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL,
.iInterface = STRING_MIDI_GADGET,
};
/* B.3.2 Class-Specific AC Interface Descriptor */
static const struct usb_ac_header_descriptor_1 ac_header_desc = {
.bLength = USB_DT_AC_HEADER_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_HEADER,
.bcdADC = __constant_cpu_to_le16(0x0100),
.wTotalLength = USB_DT_AC_HEADER_SIZE(1),
.bInCollection = 1,
.baInterfaceNr = {
[0] = GMIDI_MS_INTERFACE,
}
};
/* B.4.1 Standard MS Interface Descriptor */
static const struct usb_interface_descriptor ms_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = GMIDI_MS_INTERFACE,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_MIDISTREAMING,
.iInterface = STRING_MIDI_GADGET,
};
/* B.4.2 Class-Specific MS Interface Descriptor */
static const struct usb_ms_header_descriptor ms_header_desc = {
.bLength = USB_DT_MS_HEADER_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_HEADER,
.bcdMSC = __constant_cpu_to_le16(0x0100),
.wTotalLength = USB_DT_MS_HEADER_SIZE
+ 2*USB_DT_MIDI_IN_SIZE
+ 2*USB_DT_MIDI_OUT_SIZE(1),
};
#define JACK_IN_EMB 1
#define JACK_IN_EXT 2
#define JACK_OUT_EMB 3
#define JACK_OUT_EXT 4
/* B.4.3 MIDI IN Jack Descriptors */
static const struct usb_midi_in_jack_descriptor jack_in_emb_desc = {
.bLength = USB_DT_MIDI_IN_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_MIDI_IN_JACK,
.bJackType = USB_MS_EMBEDDED,
.bJackID = JACK_IN_EMB,
};
static const struct usb_midi_in_jack_descriptor jack_in_ext_desc = {
.bLength = USB_DT_MIDI_IN_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_MIDI_IN_JACK,
.bJackType = USB_MS_EXTERNAL,
.bJackID = JACK_IN_EXT,
};
/* B.4.4 MIDI OUT Jack Descriptors */
static const struct usb_midi_out_jack_descriptor_1 jack_out_emb_desc = {
.bLength = USB_DT_MIDI_OUT_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_MIDI_OUT_JACK,
.bJackType = USB_MS_EMBEDDED,
.bJackID = JACK_OUT_EMB,
.bNrInputPins = 1,
.pins = {
[0] = {
.baSourceID = JACK_IN_EXT,
.baSourcePin = 1,
}
}
};
static const struct usb_midi_out_jack_descriptor_1 jack_out_ext_desc = {
.bLength = USB_DT_MIDI_OUT_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = USB_MS_MIDI_OUT_JACK,
.bJackType = USB_MS_EXTERNAL,
.bJackID = JACK_OUT_EXT,
.bNrInputPins = 1,
.pins = {
[0] = {
.baSourceID = JACK_IN_EMB,
.baSourcePin = 1,
}
}
};
/* B.5.1 Standard Bulk OUT Endpoint Descriptor */
static struct usb_endpoint_descriptor bulk_out_desc = {
.bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
/* B.5.2 Class-specific MS Bulk OUT Endpoint Descriptor */
static const struct usb_ms_endpoint_descriptor_1 ms_out_desc = {
.bLength = USB_DT_MS_ENDPOINT_SIZE(1),
.bDescriptorType = USB_DT_CS_ENDPOINT,
.bDescriptorSubtype = USB_MS_GENERAL,
.bNumEmbMIDIJack = 1,
.baAssocJackID = {
[0] = JACK_IN_EMB,
}
};
/* B.6.1 Standard Bulk IN Endpoint Descriptor */
static struct usb_endpoint_descriptor bulk_in_desc = {
.bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
/* B.6.2 Class-specific MS Bulk IN Endpoint Descriptor */
static const struct usb_ms_endpoint_descriptor_1 ms_in_desc = {
.bLength = USB_DT_MS_ENDPOINT_SIZE(1),
.bDescriptorType = USB_DT_CS_ENDPOINT,
.bDescriptorSubtype = USB_MS_GENERAL,
.bNumEmbMIDIJack = 1,
.baAssocJackID = {
[0] = JACK_OUT_EMB,
}
};
static const struct usb_descriptor_header *gmidi_function [] = {
(struct usb_descriptor_header *)&ac_interface_desc,
(struct usb_descriptor_header *)&ac_header_desc,
(struct usb_descriptor_header *)&ms_interface_desc,
(struct usb_descriptor_header *)&ms_header_desc,
(struct usb_descriptor_header *)&jack_in_emb_desc,
(struct usb_descriptor_header *)&jack_in_ext_desc,
(struct usb_descriptor_header *)&jack_out_emb_desc,
(struct usb_descriptor_header *)&jack_out_ext_desc,
/* If you add more jacks, update ms_header_desc.wTotalLength */
(struct usb_descriptor_header *)&bulk_out_desc,
(struct usb_descriptor_header *)&ms_out_desc,
(struct usb_descriptor_header *)&bulk_in_desc,
(struct usb_descriptor_header *)&ms_in_desc,
NULL,
};
static char manufacturer[50];
static char product_desc[40] = "MIDI Gadget";
static char serial_number[20];
/* static strings, in UTF-8 */
static struct usb_string strings [] = {
{ STRING_MANUFACTURER, manufacturer, },
{ STRING_PRODUCT, product_desc, },
{ STRING_SERIAL, serial_number, },
{ STRING_MIDI_GADGET, longname, },
{ } /* end of list */
};
static struct usb_gadget_strings stringtab = {
.language = 0x0409, /* en-us */
.strings = strings,
};
static int config_buf(struct usb_gadget *gadget,
u8 *buf, u8 type, unsigned index)
{
int len;
/* only one configuration */
if (index != 0) {
return -EINVAL;
}
len = usb_gadget_config_buf(&config_desc,
buf, USB_BUFSIZ, gmidi_function);
if (len < 0) {
return len;
}
((struct usb_config_descriptor *)buf)->bDescriptorType = type;
return len;
}
static struct usb_request* alloc_ep_req(struct usb_ep *ep, unsigned length)
{
struct usb_request *req;
req = usb_ep_alloc_request(ep, GFP_ATOMIC);
if (req) {
req->length = length;
req->buf = kmalloc(length, GFP_ATOMIC);
if (!req->buf) {
usb_ep_free_request(ep, req);
req = NULL;
}
}
return req;
}
static void free_ep_req(struct usb_ep *ep, struct usb_request *req)
{
kfree(req->buf);
usb_ep_free_request(ep, req);
}
static const uint8_t gmidi_cin_length[] = {
0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
};
/*
* Receives a chunk of MIDI data.
*/
static void gmidi_read_data(struct usb_ep *ep, int cable,
uint8_t* data, int length)
{
struct gmidi_device *dev = ep->driver_data;
/* cable is ignored, because for now we only have one. */
if (!dev->out_substream) {
/* Nobody is listening - throw it on the floor. */
return;
}
if (!test_bit(dev->out_substream->number, &dev->out_triggered)) {
return;
}
snd_rawmidi_receive(dev->out_substream, data, length);
}
static void gmidi_handle_out_data(struct usb_ep *ep, struct usb_request *req)
{
unsigned i;
u8 *buf = req->buf;
for (i = 0; i + 3 < req->actual; i += 4) {
if (buf[i] != 0) {
int cable = buf[i] >> 4;
int length = gmidi_cin_length[buf[i] & 0x0f];
gmidi_read_data(ep, cable, &buf[i + 1], length);
}
}
}
static void gmidi_complete(struct usb_ep *ep, struct usb_request *req)
{
struct gmidi_device *dev = ep->driver_data;
int status = req->status;
switch (status) {
case 0: /* normal completion */
if (ep == dev->out_ep) {
/* we received stuff.
req is queued again, below */
gmidi_handle_out_data(ep, req);
} else if (ep == dev->in_ep) {
/* our transmit completed.
see if there's more to go.
gmidi_transmit eats req, don't queue it again. */
gmidi_transmit(dev, req);
return;
}
break;
/* this endpoint is normally active while we're configured */
case -ECONNABORTED: /* hardware forced ep reset */
case -ECONNRESET: /* request dequeued */
case -ESHUTDOWN: /* disconnect from host */
VDBG(dev, "%s gone (%d), %d/%d\n", ep->name, status,
req->actual, req->length);
if (ep == dev->out_ep) {
gmidi_handle_out_data(ep, req);
}
free_ep_req(ep, req);
return;
case -EOVERFLOW: /* buffer overrun on read means that
* we didn't provide a big enough
* buffer.
*/
default:
DBG(dev, "%s complete --> %d, %d/%d\n", ep->name,
status, req->actual, req->length);
break;
case -EREMOTEIO: /* short read */
break;
}
status = usb_ep_queue(ep, req, GFP_ATOMIC);
if (status) {
ERROR(dev, "kill %s: resubmit %d bytes --> %d\n",
ep->name, req->length, status);
usb_ep_set_halt(ep);
/* FIXME recover later ... somehow */
}
}
static int set_gmidi_config(struct gmidi_device *dev, gfp_t gfp_flags)
{
int err = 0;
struct usb_request *req;
struct usb_ep* ep;
unsigned i;
err = usb_ep_enable(dev->in_ep, &bulk_in_desc);
if (err) {
ERROR(dev, "can't start %s: %d\n", dev->in_ep->name, err);
goto fail;
}
dev->in_ep->driver_data = dev;
err = usb_ep_enable(dev->out_ep, &bulk_out_desc);
if (err) {
ERROR(dev, "can't start %s: %d\n", dev->out_ep->name, err);
goto fail;
}
dev->out_ep->driver_data = dev;
/* allocate a bunch of read buffers and queue them all at once. */
ep = dev->out_ep;
for (i = 0; i < qlen && err == 0; i++) {
req = alloc_ep_req(ep, buflen);
if (req) {
req->complete = gmidi_complete;
err = usb_ep_queue(ep, req, GFP_ATOMIC);
if (err) {
DBG(dev, "%s queue req: %d\n", ep->name, err);
}
} else {
err = -ENOMEM;
}
}
fail:
/* caller is responsible for cleanup on error */
return err;
}
static void gmidi_reset_config(struct gmidi_device *dev)
{
if (dev->config == 0) {
return;
}
DBG(dev, "reset config\n");
/* just disable endpoints, forcing completion of pending i/o.
* all our completion handlers free their requests in this case.
*/
usb_ep_disable(dev->in_ep);
usb_ep_disable(dev->out_ep);
dev->config = 0;
}
/* change our operational config. this code must agree with the code
* that returns config descriptors, and altsetting code.
*
* it's also responsible for power management interactions. some
* configurations might not work with our current power sources.
*
* note that some device controller hardware will constrain what this
* code can do, perhaps by disallowing more than one configuration or
* by limiting configuration choices (like the pxa2xx).
*/
static int
gmidi_set_config(struct gmidi_device *dev, unsigned number, gfp_t gfp_flags)
{
int result = 0;
struct usb_gadget *gadget = dev->gadget;
#if 0
/* FIXME */
/* Hacking this bit out fixes a bug where on receipt of two
USB_REQ_SET_CONFIGURATION messages, we end up with no
buffered OUT requests waiting for data. This is clearly
hiding a bug elsewhere, because if the config didn't
change then we really shouldn't do anything. */
/* Having said that, when we do "change" from config 1
to config 1, we at least gmidi_reset_config() which
clears out any requests on endpoints, so it's not like
we leak or anything. */
if (number == dev->config) {
return 0;
}
#endif
if (gadget_is_sa1100(gadget) && dev->config) {
/* tx fifo is full, but we can't clear it...*/
INFO(dev, "can't change configurations\n");
return -ESPIPE;
}
gmidi_reset_config(dev);
switch (number) {
case GMIDI_CONFIG:
result = set_gmidi_config(dev, gfp_flags);
break;
default:
result = -EINVAL;
/* FALL THROUGH */
case 0:
return result;
}
if (!result && (!dev->in_ep || !dev->out_ep)) {
result = -ENODEV;
}
if (result) {
gmidi_reset_config(dev);
} else {
char *speed;
switch (gadget->speed) {
case USB_SPEED_LOW: speed = "low"; break;
case USB_SPEED_FULL: speed = "full"; break;
case USB_SPEED_HIGH: speed = "high"; break;
default: speed = "?"; break;
}
dev->config = number;
INFO(dev, "%s speed\n", speed);
}
return result;
}
static void gmidi_setup_complete(struct usb_ep *ep, struct usb_request *req)
{
if (req->status || req->actual != req->length) {
DBG((struct gmidi_device *) ep->driver_data,
"setup complete --> %d, %d/%d\n",
req->status, req->actual, req->length);
}
}
/*
* The setup() callback implements all the ep0 functionality that's
* not handled lower down, in hardware or the hardware driver (like
* device and endpoint feature flags, and their status). It's all
* housekeeping for the gadget function we're implementing. Most of
* the work is in config-specific setup.
*/
static int gmidi_setup(struct usb_gadget *gadget,
const struct usb_ctrlrequest *ctrl)
{
struct gmidi_device *dev = get_gadget_data(gadget);
struct usb_request *req = dev->req;
int value = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
/* usually this stores reply data in the pre-allocated ep0 buffer,
* but config change events will reconfigure hardware.
*/
req->zero = 0;
switch (ctrl->bRequest) {
case USB_REQ_GET_DESCRIPTOR:
if (ctrl->bRequestType != USB_DIR_IN) {
goto unknown;
}
switch (w_value >> 8) {
case USB_DT_DEVICE:
value = min(w_length, (u16) sizeof(device_desc));
memcpy(req->buf, &device_desc, value);
break;
case USB_DT_CONFIG:
value = config_buf(gadget, req->buf,
w_value >> 8,
w_value & 0xff);
if (value >= 0) {
value = min(w_length, (u16)value);
}
break;
case USB_DT_STRING:
/* wIndex == language code.
* this driver only handles one language, you can
* add string tables for other languages, using
* any UTF-8 characters
*/
value = usb_gadget_get_string(&stringtab,
w_value & 0xff, req->buf);
if (value >= 0) {
value = min(w_length, (u16)value);
}
break;
}
break;
/* currently two configs, two speeds */
case USB_REQ_SET_CONFIGURATION:
if (ctrl->bRequestType != 0) {
goto unknown;
}
if (gadget->a_hnp_support) {
DBG(dev, "HNP available\n");
} else if (gadget->a_alt_hnp_support) {
DBG(dev, "HNP needs a different root port\n");
} else {
VDBG(dev, "HNP inactive\n");
}
spin_lock(&dev->lock);
value = gmidi_set_config(dev, w_value, GFP_ATOMIC);
spin_unlock(&dev->lock);
break;
case USB_REQ_GET_CONFIGURATION:
if (ctrl->bRequestType != USB_DIR_IN) {
goto unknown;
}
*(u8 *)req->buf = dev->config;
value = min(w_length, (u16)1);
break;
/* until we add altsetting support, or other interfaces,
* only 0/0 are possible. pxa2xx only supports 0/0 (poorly)
* and already killed pending endpoint I/O.
*/
case USB_REQ_SET_INTERFACE:
if (ctrl->bRequestType != USB_RECIP_INTERFACE) {
goto unknown;
}
spin_lock(&dev->lock);
if (dev->config && w_index < GMIDI_NUM_INTERFACES
&& w_value == 0)
{
u8 config = dev->config;
/* resets interface configuration, forgets about
* previous transaction state (queued bufs, etc)
* and re-inits endpoint state (toggle etc)
* no response queued, just zero status == success.
* if we had more than one interface we couldn't
* use this "reset the config" shortcut.
*/
gmidi_reset_config(dev);
gmidi_set_config(dev, config, GFP_ATOMIC);
value = 0;
}
spin_unlock(&dev->lock);
break;
case USB_REQ_GET_INTERFACE:
if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE)) {
goto unknown;
}
if (!dev->config) {
break;
}
if (w_index >= GMIDI_NUM_INTERFACES) {
value = -EDOM;
break;
}
*(u8 *)req->buf = 0;
value = min(w_length, (u16)1);
break;
default:
unknown:
VDBG(dev, "unknown control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
}
/* respond with data transfer before status phase? */
if (value >= 0) {
req->length = value;
req->zero = value < w_length;
value = usb_ep_queue(gadget->ep0, req, GFP_ATOMIC);
if (value < 0) {
DBG(dev, "ep_queue --> %d\n", value);
req->status = 0;
gmidi_setup_complete(gadget->ep0, req);
}
}
/* device either stalls (value < 0) or reports success */
return value;
}
static void gmidi_disconnect(struct usb_gadget *gadget)
{
struct gmidi_device *dev = get_gadget_data(gadget);
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
gmidi_reset_config(dev);
/* a more significant application might have some non-usb
* activities to quiesce here, saving resources like power
* or pushing the notification up a network stack.
*/
spin_unlock_irqrestore(&dev->lock, flags);
/* next we may get setup() calls to enumerate new connections;
* or an unbind() during shutdown (including removing module).
*/
}
static void /* __init_or_exit */ gmidi_unbind(struct usb_gadget *gadget)
{
struct gmidi_device *dev = get_gadget_data(gadget);
struct snd_card* card;
DBG(dev, "unbind\n");
card = dev->card;
dev->card = NULL;
if (card) {
snd_card_free(card);
}
/* we've already been disconnected ... no i/o is active */
if (dev->req) {
dev->req->length = USB_BUFSIZ;
free_ep_req(gadget->ep0, dev->req);
}
kfree(dev);
set_gadget_data(gadget, NULL);
}
static int gmidi_snd_free(struct snd_device *device)
{
return 0;
}
static void gmidi_transmit_packet(struct usb_request* req, uint8_t p0,
uint8_t p1, uint8_t p2, uint8_t p3)
{
unsigned length = req->length;
uint8_t* buf = (uint8_t*)req->buf + length;
buf[0] = p0;
buf[1] = p1;
buf[2] = p2;
buf[3] = p3;
req->length = length + 4;
}
/*
* Converts MIDI commands to USB MIDI packets.
*/
static void gmidi_transmit_byte(struct usb_request* req,
struct gmidi_in_port* port, uint8_t b)
{
uint8_t p0 = port->cable;
if (b >= 0xf8) {
gmidi_transmit_packet(req, p0 | 0x0f, b, 0, 0);
} else if (b >= 0xf0) {
switch (b) {
case 0xf0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case 0xf1:
case 0xf3:
port->data[0] = b;
port->state = STATE_1PARAM;
break;
case 0xf2:
port->data[0] = b;
port->state = STATE_2PARAM_1;
break;
case 0xf4:
case 0xf5:
port->state = STATE_UNKNOWN;
break;
case 0xf6:
gmidi_transmit_packet(req, p0 | 0x05, 0xf6, 0, 0);
port->state = STATE_UNKNOWN;
break;
case 0xf7:
switch (port->state) {
case STATE_SYSEX_0:
gmidi_transmit_packet(req,
p0 | 0x05, 0xf7, 0, 0);
break;
case STATE_SYSEX_1:
gmidi_transmit_packet(req,
p0 | 0x06, port->data[0], 0xf7, 0);
break;
case STATE_SYSEX_2:
gmidi_transmit_packet(req,
p0 | 0x07, port->data[0],
port->data[1], 0xf7);
break;
}
port->state = STATE_UNKNOWN;
break;
}
} else if (b >= 0x80) {
port->data[0] = b;
if (b >= 0xc0 && b <= 0xdf)
port->state = STATE_1PARAM;
else
port->state = STATE_2PARAM_1;
} else { /* b < 0x80 */
switch (port->state) {
case STATE_1PARAM:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
} else {
p0 |= 0x02;
port->state = STATE_UNKNOWN;
}
gmidi_transmit_packet(req, p0, port->data[0], b, 0);
break;
case STATE_2PARAM_1:
port->data[1] = b;
port->state = STATE_2PARAM_2;
break;
case STATE_2PARAM_2:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
port->state = STATE_2PARAM_1;
} else {
p0 |= 0x03;
port->state = STATE_UNKNOWN;
}
gmidi_transmit_packet(req,
p0, port->data[0], port->data[1], b);
break;
case STATE_SYSEX_0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case STATE_SYSEX_1:
port->data[1] = b;
port->state = STATE_SYSEX_2;
break;
case STATE_SYSEX_2:
gmidi_transmit_packet(req,
p0 | 0x04, port->data[0], port->data[1], b);
port->state = STATE_SYSEX_0;
break;
}
}
}
static void gmidi_transmit(struct gmidi_device* dev, struct usb_request* req)
{
struct usb_ep* ep = dev->in_ep;
struct gmidi_in_port* port = &dev->in_port;
if (!ep) {
return;
}
if (!req) {
req = alloc_ep_req(ep, buflen);
}
if (!req) {
ERROR(dev, "gmidi_transmit: alloc_ep_request failed\n");
return;
}
req->length = 0;
req->complete = gmidi_complete;
if (port->active) {
while (req->length + 3 < buflen) {
uint8_t b;
if (snd_rawmidi_transmit(dev->in_substream, &b, 1)
!= 1)
{
port->active = 0;
break;
}
gmidi_transmit_byte(req, port, b);
}
}
if (req->length > 0) {
usb_ep_queue(ep, req, GFP_ATOMIC);
} else {
free_ep_req(ep, req);
}
}
static void gmidi_in_tasklet(unsigned long data)
{
struct gmidi_device* dev = (struct gmidi_device*)data;
gmidi_transmit(dev, NULL);
}
static int gmidi_in_open(struct snd_rawmidi_substream *substream)
{
struct gmidi_device* dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_in_open\n");
dev->in_substream = substream;
dev->in_port.state = STATE_UNKNOWN;
return 0;
}
static int gmidi_in_close(struct snd_rawmidi_substream *substream)
{
VDBG(dev, "gmidi_in_close\n");
return 0;
}
static void gmidi_in_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct gmidi_device* dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_in_trigger %d\n", up);
dev->in_port.active = up;
if (up) {
tasklet_hi_schedule(&dev->tasklet);
}
}
static int gmidi_out_open(struct snd_rawmidi_substream *substream)
{
struct gmidi_device* dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_out_open\n");
dev->out_substream = substream;
return 0;
}
static int gmidi_out_close(struct snd_rawmidi_substream *substream)
{
VDBG(dev, "gmidi_out_close\n");
return 0;
}
static void gmidi_out_trigger(struct snd_rawmidi_substream *substream, int up)
{
struct gmidi_device* dev = substream->rmidi->private_data;
VDBG(dev, "gmidi_out_trigger %d\n", up);
if (up) {
set_bit(substream->number, &dev->out_triggered);
} else {
clear_bit(substream->number, &dev->out_triggered);
}
}
static struct snd_rawmidi_ops gmidi_in_ops = {
.open = gmidi_in_open,
.close = gmidi_in_close,
.trigger = gmidi_in_trigger,
};
static struct snd_rawmidi_ops gmidi_out_ops = {
.open = gmidi_out_open,
.close = gmidi_out_close,
.trigger = gmidi_out_trigger
};
/* register as a sound "card" */
static int gmidi_register_card(struct gmidi_device *dev)
{
struct snd_card *card;
struct snd_rawmidi *rmidi;
int err;
int out_ports = 1;
int in_ports = 1;
static struct snd_device_ops ops = {
.dev_free = gmidi_snd_free,
};
card = snd_card_new(index, id, THIS_MODULE, 0);
if (!card) {
ERROR(dev, "snd_card_new failed\n");
err = -ENOMEM;
goto fail;
}
dev->card = card;
err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, dev, &ops);
if (err < 0) {
ERROR(dev, "snd_device_new failed: error %d\n", err);
goto fail;
}
strcpy(card->driver, longname);
strcpy(card->longname, longname);
strcpy(card->shortname, shortname);
/* Set up rawmidi */
dev->in_port.dev = dev;
dev->in_port.active = 0;
snd_component_add(card, "MIDI");
err = snd_rawmidi_new(card, "USB MIDI Gadget", 0,
out_ports, in_ports, &rmidi);
if (err < 0) {
ERROR(dev, "snd_rawmidi_new failed: error %d\n", err);
goto fail;
}
dev->rmidi = rmidi;
strcpy(rmidi->name, card->shortname);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = dev;
/* Yes, rawmidi OUTPUT = USB IN, and rawmidi INPUT = USB OUT.
It's an upside-down world being a gadget. */
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &gmidi_in_ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &gmidi_out_ops);
snd_card_set_dev(card, &dev->gadget->dev);
/* register it - we're ready to go */
err = snd_card_register(card);
if (err < 0) {
ERROR(dev, "snd_card_register failed\n");
goto fail;
}
VDBG(dev, "gmidi_register_card finished ok\n");
return 0;
fail:
if (dev->card) {
snd_card_free(dev->card);
dev->card = NULL;
}
return err;
}
/*
* Creates an output endpoint, and initializes output ports.
*/
static int __devinit gmidi_bind(struct usb_gadget *gadget)
{
struct gmidi_device *dev;
struct usb_ep *in_ep, *out_ep;
int gcnum, err = 0;
/* support optional vendor/distro customization */
if (idVendor) {
if (!idProduct) {
printk(KERN_ERR "idVendor needs idProduct!\n");
return -ENODEV;
}
device_desc.idVendor = cpu_to_le16(idVendor);
device_desc.idProduct = cpu_to_le16(idProduct);
if (bcdDevice) {
device_desc.bcdDevice = cpu_to_le16(bcdDevice);
}
}
if (iManufacturer) {
strlcpy(manufacturer, iManufacturer, sizeof(manufacturer));
} else {
snprintf(manufacturer, sizeof(manufacturer), "%s %s with %s",
system_utsname.sysname, system_utsname.release,
gadget->name);
}
if (iProduct) {
strlcpy(product_desc, iProduct, sizeof(product_desc));
}
if (iSerialNumber) {
device_desc.iSerialNumber = STRING_SERIAL,
strlcpy(serial_number, iSerialNumber, sizeof(serial_number));
}
/* Bulk-only drivers like this one SHOULD be able to
* autoconfigure on any sane usb controller driver,
* but there may also be important quirks to address.
*/
usb_ep_autoconfig_reset(gadget);
in_ep = usb_ep_autoconfig(gadget, &bulk_in_desc);
if (!in_ep) {
autoconf_fail:
printk(KERN_ERR "%s: can't autoconfigure on %s\n",
shortname, gadget->name);
return -ENODEV;
}
EP_IN_NAME = in_ep->name;
in_ep->driver_data = in_ep; /* claim */
out_ep = usb_ep_autoconfig(gadget, &bulk_out_desc);
if (!out_ep) {
goto autoconf_fail;
}
EP_OUT_NAME = out_ep->name;
out_ep->driver_data = out_ep; /* claim */
gcnum = usb_gadget_controller_number(gadget);
if (gcnum >= 0) {
device_desc.bcdDevice = cpu_to_le16(0x0200 + gcnum);
} else {
/* gmidi is so simple (no altsettings) that
* it SHOULD NOT have problems with bulk-capable hardware.
* so warn about unrecognized controllers, don't panic.
*/
printk(KERN_WARNING "%s: controller '%s' not recognized\n",
shortname, gadget->name);
device_desc.bcdDevice = __constant_cpu_to_le16(0x9999);
}
/* ok, we made sense of the hardware ... */
dev = kzalloc(sizeof(*dev), SLAB_KERNEL);
if (!dev) {
return -ENOMEM;
}
spin_lock_init(&dev->lock);
dev->gadget = gadget;
dev->in_ep = in_ep;
dev->out_ep = out_ep;
set_gadget_data(gadget, dev);
tasklet_init(&dev->tasklet, gmidi_in_tasklet, (unsigned long)dev);
/* preallocate control response and buffer */
dev->req = usb_ep_alloc_request(gadget->ep0, GFP_KERNEL);
if (!dev->req) {
err = -ENOMEM;
goto fail;
}
dev->req->buf = usb_ep_alloc_buffer(gadget->ep0, USB_BUFSIZ,
&dev->req->dma, GFP_KERNEL);
if (!dev->req->buf) {
err = -ENOMEM;
goto fail;
}
dev->req->complete = gmidi_setup_complete;
device_desc.bMaxPacketSize0 = gadget->ep0->maxpacket;
gadget->ep0->driver_data = dev;
INFO(dev, "%s, version: " DRIVER_VERSION "\n", longname);
INFO(dev, "using %s, OUT %s IN %s\n", gadget->name,
EP_OUT_NAME, EP_IN_NAME);
/* register as an ALSA sound card */
err = gmidi_register_card(dev);
if (err < 0) {
goto fail;
}
VDBG(dev, "gmidi_bind finished ok\n");
return 0;
fail:
gmidi_unbind(gadget);
return err;
}
static void gmidi_suspend(struct usb_gadget *gadget)
{
struct gmidi_device *dev = get_gadget_data(gadget);
if (gadget->speed == USB_SPEED_UNKNOWN) {
return;
}
DBG(dev, "suspend\n");
}
static void gmidi_resume(struct usb_gadget *gadget)
{
struct gmidi_device *dev = get_gadget_data(gadget);
DBG(dev, "resume\n");
}
static struct usb_gadget_driver gmidi_driver = {
.speed = USB_SPEED_FULL,
.function = (char *)longname,
.bind = gmidi_bind,
.unbind = __exit_p(gmidi_unbind),
.setup = gmidi_setup,
.disconnect = gmidi_disconnect,
.suspend = gmidi_suspend,
.resume = gmidi_resume,
.driver = {
.name = (char *)shortname,
.owner = THIS_MODULE,
},
};
static int __init gmidi_init(void)
{
return usb_gadget_register_driver(&gmidi_driver);
}
module_init(gmidi_init);
static void __exit gmidi_cleanup(void)
{
usb_gadget_unregister_driver(&gmidi_driver);
}
module_exit(gmidi_cleanup);
/*
* <linux/usb/audio.h> -- USB Audio definitions.
*
* Copyright (C) 2006 Thumtronics Pty Ltd.
* Developed for Thumtronics by Grey Innovation
* Ben Williamson <ben.williamson@greyinnovation.com>
*
* This software is distributed under the terms of the GNU General Public
* License ("GPL") version 2, as published by the Free Software Foundation.
*
* This file holds USB constants and structures defined
* by the USB Device Class Definition for Audio Devices.
* Comments below reference relevant sections of that document:
*
* http://www.usb.org/developers/devclass_docs/audio10.pdf
*/
#ifndef __LINUX_USB_AUDIO_H
#define __LINUX_USB_AUDIO_H
#include <linux/types.h>
/* A.2 Audio Interface Subclass Codes */
#define USB_SUBCLASS_AUDIOCONTROL 0x01
#define USB_SUBCLASS_AUDIOSTREAMING 0x02
#define USB_SUBCLASS_MIDISTREAMING 0x03
/* 4.3.2 Class-Specific AC Interface Descriptor */
struct usb_ac_header_descriptor {
__u8 bLength; // 8+n
__u8 bDescriptorType; // USB_DT_CS_INTERFACE
__u8 bDescriptorSubtype; // USB_MS_HEADER
__le16 bcdADC; // 0x0100
__le16 wTotalLength; // includes Unit and Terminal desc.
__u8 bInCollection; // n
__u8 baInterfaceNr[]; // [n]
} __attribute__ ((packed));
#define USB_DT_AC_HEADER_SIZE(n) (8+(n))
/* As above, but more useful for defining your own descriptors: */
#define DECLARE_USB_AC_HEADER_DESCRIPTOR(n) \
struct usb_ac_header_descriptor_##n { \
__u8 bLength; \
__u8 bDescriptorType; \
__u8 bDescriptorSubtype; \
__le16 bcdADC; \
__le16 wTotalLength; \
__u8 bInCollection; \
__u8 baInterfaceNr[n]; \
} __attribute__ ((packed))
#endif
/*
* <linux/usb/midi.h> -- USB MIDI definitions.
*
* Copyright (C) 2006 Thumtronics Pty Ltd.
* Developed for Thumtronics by Grey Innovation
* Ben Williamson <ben.williamson@greyinnovation.com>
*
* This software is distributed under the terms of the GNU General Public
* License ("GPL") version 2, as published by the Free Software Foundation.
*
* This file holds USB constants and structures defined
* by the USB Device Class Definition for MIDI Devices.
* Comments below reference relevant sections of that document:
*
* http://www.usb.org/developers/devclass_docs/midi10.pdf
*/
#ifndef __LINUX_USB_MIDI_H
#define __LINUX_USB_MIDI_H
#include <linux/types.h>
/* A.1 MS Class-Specific Interface Descriptor Subtypes */
#define USB_MS_HEADER 0x01
#define USB_MS_MIDI_IN_JACK 0x02
#define USB_MS_MIDI_OUT_JACK 0x03
#define USB_MS_ELEMENT 0x04
/* A.2 MS Class-Specific Endpoint Descriptor Subtypes */
#define USB_MS_GENERAL 0x01
/* A.3 MS MIDI IN and OUT Jack Types */
#define USB_MS_EMBEDDED 0x01
#define USB_MS_EXTERNAL 0x02
/* 6.1.2.1 Class-Specific MS Interface Header Descriptor */
struct usb_ms_header_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__le16 bcdMSC;
__le16 wTotalLength;
} __attribute__ ((packed));
#define USB_DT_MS_HEADER_SIZE 7
/* 6.1.2.2 MIDI IN Jack Descriptor */
struct usb_midi_in_jack_descriptor {
__u8 bLength;
__u8 bDescriptorType; // USB_DT_CS_INTERFACE
__u8 bDescriptorSubtype; // USB_MS_MIDI_IN_JACK
__u8 bJackType; // USB_MS_EMBEDDED/EXTERNAL
__u8 bJackID;
__u8 iJack;
} __attribute__ ((packed));
#define USB_DT_MIDI_IN_SIZE 6
struct usb_midi_source_pin {
__u8 baSourceID;
__u8 baSourcePin;
} __attribute__ ((packed));
/* 6.1.2.3 MIDI OUT Jack Descriptor */
struct usb_midi_out_jack_descriptor {
__u8 bLength;
__u8 bDescriptorType; // USB_DT_CS_INTERFACE
__u8 bDescriptorSubtype; // USB_MS_MIDI_OUT_JACK
__u8 bJackType; // USB_MS_EMBEDDED/EXTERNAL
__u8 bJackID;
__u8 bNrInputPins; // p
struct usb_midi_source_pin pins[]; // [p]
/*__u8 iJack; -- ommitted due to variable-sized pins[] */
} __attribute__ ((packed));
#define USB_DT_MIDI_OUT_SIZE(p) (7 + 2 * (p))
/* As above, but more useful for defining your own descriptors: */
#define DECLARE_USB_MIDI_OUT_JACK_DESCRIPTOR(p) \
struct usb_midi_out_jack_descriptor_##p { \
__u8 bLength; \
__u8 bDescriptorType; \
__u8 bDescriptorSubtype; \
__u8 bJackType; \
__u8 bJackID; \
__u8 bNrInputPins; \
struct usb_midi_source_pin pins[p]; \
__u8 iJack; \
} __attribute__ ((packed))
/* 6.2.2 Class-Specific MS Bulk Data Endpoint Descriptor */
struct usb_ms_endpoint_descriptor {
__u8 bLength; // 4+n
__u8 bDescriptorType; // USB_DT_CS_ENDPOINT
__u8 bDescriptorSubtype; // USB_MS_GENERAL
__u8 bNumEmbMIDIJack; // n
__u8 baAssocJackID[]; // [n]
} __attribute__ ((packed));
#define USB_DT_MS_ENDPOINT_SIZE(n) (4 + (n))
/* As above, but more useful for defining your own descriptors: */
#define DECLARE_USB_MS_ENDPOINT_DESCRIPTOR(n) \
struct usb_ms_endpoint_descriptor_##n { \
__u8 bLength; \
__u8 bDescriptorType; \
__u8 bDescriptorSubtype; \
__u8 bNumEmbMIDIJack; \
__u8 baAssocJackID[n]; \
} __attribute__ ((packed))
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册