提交 97c68d00 编写于 作者: L Linus Torvalds

Merge branch 'for-linus' of git://git.kernel.dk/linux-2.6-block

* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
  cfq-iosched: cache prio_tree root in cfqq->p_root
  cfq-iosched: fix bug with aliased request and cooperation detection
  cfq-iosched: clear ->prio_trees[] on cfqd alloc
  block: fix intermittent dm timeout based oops
  umem: fix request_queue lock warning
  block: simplify I/O stat accounting
  pktcdvd.h should include mempool.h
  cfq-iosched: use the default seek distance when there aren't enough seek samples
  cfq-iosched: make seek_mean converge more quickly
  block: make blk_abort_queue() ignore non-request based devices
  block: include empty disks in /proc/diskstats
  bio: use bio_kmalloc() in copy/map functions
  bio: fix bio_kmalloc()
  block: fix queue bounce limit setting
  block: fix SG_IO vector request data length handling
  scatterlist: make sure sg_miter_next() doesn't return 0 sized mappings
......@@ -643,7 +643,7 @@ static inline void blk_free_request(struct request_queue *q, struct request *rq)
}
static struct request *
blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
{
struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
......@@ -652,7 +652,7 @@ blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
blk_rq_init(q, rq);
rq->cmd_flags = rw | REQ_ALLOCED;
rq->cmd_flags = flags | REQ_ALLOCED;
if (priv) {
if (unlikely(elv_set_request(q, rq, gfp_mask))) {
......@@ -792,6 +792,8 @@ static struct request *get_request(struct request_queue *q, int rw_flags,
if (priv)
rl->elvpriv++;
if (blk_queue_io_stat(q))
rw_flags |= REQ_IO_STAT;
spin_unlock_irq(q->queue_lock);
rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
......
......@@ -402,7 +402,10 @@ static int attempt_merge(struct request_queue *q, struct request *req,
elv_merge_requests(q, req, next);
blk_account_io_merge(req);
/*
* 'next' is going away, so update stats accordingly
*/
blk_account_io_merge(next);
req->ioprio = ioprio_best(req->ioprio, next->ioprio);
if (blk_rq_cpu_valid(next))
......
......@@ -157,25 +157,27 @@ EXPORT_SYMBOL(blk_queue_make_request);
/**
* blk_queue_bounce_limit - set bounce buffer limit for queue
* @q: the request queue for the device
* @dma_addr: bus address limit
* @dma_mask: the maximum address the device can handle
*
* Description:
* Different hardware can have different requirements as to what pages
* it can do I/O directly to. A low level driver can call
* blk_queue_bounce_limit to have lower memory pages allocated as bounce
* buffers for doing I/O to pages residing above @dma_addr.
* buffers for doing I/O to pages residing above @dma_mask.
**/
void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
{
unsigned long b_pfn = dma_addr >> PAGE_SHIFT;
unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
int dma = 0;
q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
/* Assume anything <= 4GB can be handled by IOMMU.
Actually some IOMMUs can handle everything, but I don't
know of a way to test this here. */
if (b_pfn < (min_t(u64, 0x100000000UL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
/*
* Assume anything <= 4GB can be handled by IOMMU. Actually
* some IOMMUs can handle everything, but I don't know of a
* way to test this here.
*/
if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
dma = 1;
q->bounce_pfn = max_low_pfn;
#else
......
......@@ -209,14 +209,10 @@ static ssize_t queue_iostats_store(struct request_queue *q, const char *page,
ssize_t ret = queue_var_store(&stats, page, count);
spin_lock_irq(q->queue_lock);
elv_quiesce_start(q);
if (stats)
queue_flag_set(QUEUE_FLAG_IO_STAT, q);
else
queue_flag_clear(QUEUE_FLAG_IO_STAT, q);
elv_quiesce_end(q);
spin_unlock_irq(q->queue_lock);
return ret;
......
......@@ -211,6 +211,12 @@ void blk_abort_queue(struct request_queue *q)
struct request *rq, *tmp;
LIST_HEAD(list);
/*
* Not a request based block device, nothing to abort
*/
if (!q->request_fn)
return;
spin_lock_irqsave(q->queue_lock, flags);
elv_abort_queue(q);
......@@ -224,6 +230,13 @@ void blk_abort_queue(struct request_queue *q)
list_for_each_entry_safe(rq, tmp, &list, timeout_list)
blk_abort_request(rq);
/*
* Occasionally, blk_abort_request() will return without
* deleting the element from the list. Make sure we add those back
* instead of leaving them on the local stack list.
*/
list_splice(&list, &q->timeout_list);
spin_unlock_irqrestore(q->queue_lock, flags);
}
......
......@@ -114,12 +114,7 @@ static inline int blk_cpu_to_group(int cpu)
static inline int blk_do_io_stat(struct request *rq)
{
struct gendisk *disk = rq->rq_disk;
if (!disk || !disk->queue)
return 0;
return blk_queue_io_stat(disk->queue) && (rq->cmd_flags & REQ_ELVPRIV);
return rq->rq_disk && blk_rq_io_stat(rq);
}
#endif
......@@ -154,6 +154,8 @@ struct cfq_queue {
unsigned long rb_key;
/* prio tree member */
struct rb_node p_node;
/* prio tree root we belong to, if any */
struct rb_root *p_root;
/* sorted list of pending requests */
struct rb_root sort_list;
/* if fifo isn't expired, next request to serve */
......@@ -558,10 +560,10 @@ static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
}
static struct cfq_queue *
cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
struct rb_node **ret_parent, struct rb_node ***rb_link)
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
sector_t sector, struct rb_node **ret_parent,
struct rb_node ***rb_link)
{
struct rb_root *root = &cfqd->prio_trees[ioprio];
struct rb_node **p, *parent;
struct cfq_queue *cfqq = NULL;
......@@ -584,34 +586,38 @@ cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
else
break;
p = n;
cfqq = NULL;
}
*ret_parent = parent;
if (rb_link)
*rb_link = p;
return NULL;
return cfqq;
}
static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
struct rb_root *root = &cfqd->prio_trees[cfqq->ioprio];
struct rb_node **p, *parent;
struct cfq_queue *__cfqq;
if (!RB_EMPTY_NODE(&cfqq->p_node))
rb_erase_init(&cfqq->p_node, root);
if (cfqq->p_root) {
rb_erase(&cfqq->p_node, cfqq->p_root);
cfqq->p_root = NULL;
}
if (cfq_class_idle(cfqq))
return;
if (!cfqq->next_rq)
return;
__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->ioprio, cfqq->next_rq->sector,
cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, cfqq->next_rq->sector,
&parent, &p);
BUG_ON(__cfqq);
if (!__cfqq) {
rb_link_node(&cfqq->p_node, parent, p);
rb_insert_color(&cfqq->p_node, root);
rb_insert_color(&cfqq->p_node, cfqq->p_root);
} else
cfqq->p_root = NULL;
}
/*
......@@ -656,8 +662,10 @@ static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
if (!RB_EMPTY_NODE(&cfqq->rb_node))
cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
if (!RB_EMPTY_NODE(&cfqq->p_node))
rb_erase_init(&cfqq->p_node, &cfqd->prio_trees[cfqq->ioprio]);
if (cfqq->p_root) {
rb_erase(&cfqq->p_node, cfqq->p_root);
cfqq->p_root = NULL;
}
BUG_ON(!cfqd->busy_queues);
cfqd->busy_queues--;
......@@ -947,20 +955,24 @@ static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
return cfqd->last_position - rq->sector;
}
#define CIC_SEEK_THR 8 * 1024
#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
{
struct cfq_io_context *cic = cfqd->active_cic;
sector_t sdist = cic->seek_mean;
if (!sample_valid(cic->seek_samples))
return 0;
sdist = CIC_SEEK_THR;
return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
return cfq_dist_from_last(cfqd, rq) <= sdist;
}
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
struct cfq_queue *cur_cfqq)
{
struct rb_root *root = &cfqd->prio_trees[cur_cfqq->ioprio];
struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
struct rb_node *parent, *node;
struct cfq_queue *__cfqq;
sector_t sector = cfqd->last_position;
......@@ -972,8 +984,7 @@ static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
* First, if we find a request starting at the end of the last
* request, choose it.
*/
__cfqq = cfq_prio_tree_lookup(cfqd, cur_cfqq->ioprio,
sector, &parent, NULL);
__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
if (__cfqq)
return __cfqq;
......@@ -1039,9 +1050,6 @@ static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
return cfqq;
}
#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
{
struct cfq_queue *cfqq = cfqd->active_queue;
......@@ -1908,7 +1916,9 @@ cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
sector_t sdist;
u64 total;
if (cic->last_request_pos < rq->sector)
if (!cic->last_request_pos)
sdist = 0;
else if (cic->last_request_pos < rq->sector)
sdist = rq->sector - cic->last_request_pos;
else
sdist = cic->last_request_pos - rq->sector;
......@@ -2443,12 +2453,22 @@ static void cfq_exit_queue(struct elevator_queue *e)
static void *cfq_init_queue(struct request_queue *q)
{
struct cfq_data *cfqd;
int i;
cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
if (!cfqd)
return NULL;
cfqd->service_tree = CFQ_RB_ROOT;
/*
* Not strictly needed (since RB_ROOT just clears the node and we
* zeroed cfqd on alloc), but better be safe in case someone decides
* to add magic to the rb code
*/
for (i = 0; i < CFQ_PRIO_LISTS; i++)
cfqd->prio_trees[i] = RB_ROOT;
INIT_LIST_HEAD(&cfqd->cic_list);
cfqd->queue = q;
......
......@@ -98,7 +98,7 @@ void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
if (flags & DISK_PITER_REVERSE)
piter->idx = ptbl->len - 1;
else if (flags & DISK_PITER_INCL_PART0)
else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
piter->idx = 0;
else
piter->idx = 1;
......@@ -134,7 +134,8 @@ struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
/* determine iteration parameters */
if (piter->flags & DISK_PITER_REVERSE) {
inc = -1;
if (piter->flags & DISK_PITER_INCL_PART0)
if (piter->flags & (DISK_PITER_INCL_PART0 |
DISK_PITER_INCL_EMPTY_PART0))
end = -1;
else
end = 0;
......@@ -150,7 +151,10 @@ struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
part = rcu_dereference(ptbl->part[piter->idx]);
if (!part)
continue;
if (!(piter->flags & DISK_PITER_INCL_EMPTY) && !part->nr_sects)
if (!part->nr_sects &&
!(piter->flags & DISK_PITER_INCL_EMPTY) &&
!(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
piter->idx == 0))
continue;
get_device(part_to_dev(part));
......@@ -1011,7 +1015,7 @@ static int diskstats_show(struct seq_file *seqf, void *v)
"\n\n");
*/
disk_part_iter_init(&piter, gp, DISK_PITER_INCL_PART0);
disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
while ((hd = disk_part_iter_next(&piter))) {
cpu = part_stat_lock();
part_round_stats(cpu, hd);
......
......@@ -290,6 +290,7 @@ static int sg_io(struct request_queue *q, struct gendisk *bd_disk,
if (hdr->iovec_count) {
const int size = sizeof(struct sg_iovec) * hdr->iovec_count;
size_t iov_data_len;
struct sg_iovec *iov;
iov = kmalloc(size, GFP_KERNEL);
......@@ -304,8 +305,18 @@ static int sg_io(struct request_queue *q, struct gendisk *bd_disk,
goto out;
}
/* SG_IO howto says that the shorter of the two wins */
iov_data_len = iov_length((struct iovec *)iov,
hdr->iovec_count);
if (hdr->dxfer_len < iov_data_len) {
hdr->iovec_count = iov_shorten((struct iovec *)iov,
hdr->iovec_count,
hdr->dxfer_len);
iov_data_len = hdr->dxfer_len;
}
ret = blk_rq_map_user_iov(q, rq, NULL, iov, hdr->iovec_count,
hdr->dxfer_len, GFP_KERNEL);
iov_data_len, GFP_KERNEL);
kfree(iov);
} else if (hdr->dxfer_len)
ret = blk_rq_map_user(q, rq, NULL, hdr->dxferp, hdr->dxfer_len,
......
......@@ -906,6 +906,7 @@ static int __devinit mm_pci_probe(struct pci_dev *dev,
goto failed_alloc;
blk_queue_make_request(card->queue, mm_make_request);
card->queue->queue_lock = &card->lock;
card->queue->queuedata = card;
card->queue->unplug_fn = mm_unplug_device;
......
......@@ -174,14 +174,6 @@ struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
{
struct bio_vec *bvl;
/*
* If 'bs' is given, lookup the pool and do the mempool alloc.
* If not, this is a bio_kmalloc() allocation and just do a
* kzalloc() for the exact number of vecs right away.
*/
if (!bs)
bvl = kmalloc(nr * sizeof(struct bio_vec), gfp_mask);
/*
* see comment near bvec_array define!
*/
......@@ -260,21 +252,6 @@ void bio_free(struct bio *bio, struct bio_set *bs)
mempool_free(p, bs->bio_pool);
}
/*
* default destructor for a bio allocated with bio_alloc_bioset()
*/
static void bio_fs_destructor(struct bio *bio)
{
bio_free(bio, fs_bio_set);
}
static void bio_kmalloc_destructor(struct bio *bio)
{
if (bio_has_allocated_vec(bio))
kfree(bio->bi_io_vec);
kfree(bio);
}
void bio_init(struct bio *bio)
{
memset(bio, 0, sizeof(*bio));
......@@ -301,21 +278,15 @@ void bio_init(struct bio *bio)
**/
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
{
unsigned long idx = BIO_POOL_NONE;
struct bio_vec *bvl = NULL;
struct bio *bio = NULL;
unsigned long idx = 0;
void *p = NULL;
struct bio *bio;
void *p;
if (bs) {
p = mempool_alloc(bs->bio_pool, gfp_mask);
if (!p)
goto err;
if (unlikely(!p))
return NULL;
bio = p + bs->front_pad;
} else {
bio = kmalloc(sizeof(*bio), gfp_mask);
if (!bio)
goto err;
}
bio_init(bio);
......@@ -332,22 +303,50 @@ struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
nr_iovecs = bvec_nr_vecs(idx);
}
out_set:
bio->bi_flags |= idx << BIO_POOL_OFFSET;
bio->bi_max_vecs = nr_iovecs;
out_set:
bio->bi_io_vec = bvl;
return bio;
err_free:
if (bs)
mempool_free(p, bs->bio_pool);
else
kfree(bio);
err:
return NULL;
}
static void bio_fs_destructor(struct bio *bio)
{
bio_free(bio, fs_bio_set);
}
/**
* bio_alloc - allocate a new bio, memory pool backed
* @gfp_mask: allocation mask to use
* @nr_iovecs: number of iovecs
*
* Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask
* contains __GFP_WAIT, the allocation is guaranteed to succeed.
*
* RETURNS:
* Pointer to new bio on success, NULL on failure.
*/
struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
{
struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
if (bio)
bio->bi_destructor = bio_fs_destructor;
return bio;
}
static void bio_kmalloc_destructor(struct bio *bio)
{
if (bio_integrity(bio))
bio_integrity_free(bio);
kfree(bio);
}
/**
* bio_alloc - allocate a bio for I/O
* @gfp_mask: the GFP_ mask given to the slab allocator
......@@ -366,28 +365,19 @@ struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
* do so can cause livelocks under memory pressure.
*
**/
struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
{
struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
if (bio)
bio->bi_destructor = bio_fs_destructor;
return bio;
}
/*
* Like bio_alloc(), but doesn't use a mempool backing. This means that
* it CAN fail, but while bio_alloc() can only be used for allocations
* that have a short (finite) life span, bio_kmalloc() should be used
* for more permanent bio allocations (like allocating some bio's for
* initalization or setup purposes).
*/
struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
{
struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
struct bio *bio;
if (bio)
bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
gfp_mask);
if (unlikely(!bio))
return NULL;
bio_init(bio);
bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
bio->bi_max_vecs = nr_iovecs;
bio->bi_io_vec = bio->bi_inline_vecs;
bio->bi_destructor = bio_kmalloc_destructor;
return bio;
......@@ -832,7 +822,7 @@ struct bio *bio_copy_user_iov(struct request_queue *q,
return ERR_PTR(-ENOMEM);
ret = -ENOMEM;
bio = bio_alloc(gfp_mask, nr_pages);
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
goto out_bmd;
......@@ -956,7 +946,7 @@ static struct bio *__bio_map_user_iov(struct request_queue *q,
if (!nr_pages)
return ERR_PTR(-EINVAL);
bio = bio_alloc(gfp_mask, nr_pages);
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
return ERR_PTR(-ENOMEM);
......@@ -1140,7 +1130,7 @@ static struct bio *__bio_map_kern(struct request_queue *q, void *data,
int offset, i;
struct bio *bio;
bio = bio_alloc(gfp_mask, nr_pages);
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
return ERR_PTR(-ENOMEM);
......
......@@ -132,6 +132,7 @@ struct bio {
* top 4 bits of bio flags indicate the pool this bio came from
*/
#define BIO_POOL_BITS (4)
#define BIO_POOL_NONE ((1UL << BIO_POOL_BITS) - 1)
#define BIO_POOL_OFFSET (BITS_PER_LONG - BIO_POOL_BITS)
#define BIO_POOL_MASK (1UL << BIO_POOL_OFFSET)
#define BIO_POOL_IDX(bio) ((bio)->bi_flags >> BIO_POOL_OFFSET)
......
......@@ -118,6 +118,7 @@ enum rq_flag_bits {
__REQ_COPY_USER, /* contains copies of user pages */
__REQ_INTEGRITY, /* integrity metadata has been remapped */
__REQ_NOIDLE, /* Don't anticipate more IO after this one */
__REQ_IO_STAT, /* account I/O stat */
__REQ_NR_BITS, /* stops here */
};
......@@ -145,6 +146,7 @@ enum rq_flag_bits {
#define REQ_COPY_USER (1 << __REQ_COPY_USER)
#define REQ_INTEGRITY (1 << __REQ_INTEGRITY)
#define REQ_NOIDLE (1 << __REQ_NOIDLE)
#define REQ_IO_STAT (1 << __REQ_IO_STAT)
#define BLK_MAX_CDB 16
......@@ -598,6 +600,7 @@ enum {
blk_failfast_transport(rq) || \
blk_failfast_driver(rq))
#define blk_rq_started(rq) ((rq)->cmd_flags & REQ_STARTED)
#define blk_rq_io_stat(rq) ((rq)->cmd_flags & REQ_IO_STAT)
#define blk_account_rq(rq) (blk_rq_started(rq) && (blk_fs_request(rq) || blk_discard_rq(rq)))
......
......@@ -214,6 +214,7 @@ static inline void disk_put_part(struct hd_struct *part)
#define DISK_PITER_REVERSE (1 << 0) /* iterate in the reverse direction */
#define DISK_PITER_INCL_EMPTY (1 << 1) /* include 0-sized parts */
#define DISK_PITER_INCL_PART0 (1 << 2) /* include partition 0 */
#define DISK_PITER_INCL_EMPTY_PART0 (1 << 3) /* include empty partition 0 */
struct disk_part_iter {
struct gendisk *disk;
......
......@@ -113,6 +113,7 @@ struct pkt_ctrl_command {
#include <linux/cdrom.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/mempool.h>
/* default bio write queue congestion marks */
#define PKT_WRITE_CONGESTION_ON 10000
......
......@@ -347,9 +347,12 @@ bool sg_miter_next(struct sg_mapping_iter *miter)
sg_miter_stop(miter);
/* get to the next sg if necessary. __offset is adjusted by stop */
if (miter->__offset == miter->__sg->length && --miter->__nents) {
while (miter->__offset == miter->__sg->length) {
if (--miter->__nents) {
miter->__sg = sg_next(miter->__sg);
miter->__offset = 0;
} else
return false;
}
/* map the next page */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册