# The name of library library_name: mobilenet target_abis: [arm64-v8a] model_graph_format: file model_data_format: file models: mobilenet_v1: # model tag, which will be used in model loading and must be specific. platform: onnx # path to your onnx model file. Support local path, http:// and https:// model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v1/mobilenet-v1-1.0.pb # sha256_checksum of your model's onnx file. # use this command to get the sha256_checksum: sha256sum path/to/your/pb/file model_sha256_checksum: 71b10f540ece33c49a7b51f5d4095fc9bd78ce46ebf0300487b2ee23d71294e6 # define your model's interface # if there multiple inputs or outputs, write like blow: # subgraphs: # - input_tensors: # - input0 # - input1 # input_shapes: # - 1,224,224,3 # - 1,224,224,3 # output_tensors: # - output0 # - output1 # output_shapes: # - 1,1001 # - 1,1001 subgraphs: - input_tensors: - input input_shapes: - 1,224,224,3 output_tensors: - MobilenetV1/Predictions/Reshape_1 output_shapes: - 1,1001 # onnx backend framwork for validation. Suppport pytorch/caffe/tensorflow. Default is tensorflow. backend: tensorflow # cpu, gpu or cpu+gpu runtime: cpu+gpu winograd: 0