# 库的名字 library_name: library_name # 配置文件名会被用作生成库的名称:libmace-${library_name}.a target_abis: [armeabi-v7a, arm64-v8a] # 具体机型的soc编号,可以使用`adb shell getprop | grep ro.board.platform | cut -d [ -f3 | cut -d ] -f1`获取 target_socs: [msm8998] embed_model_data: 1 build_type: code # 模型build类型。code表示将模型转为代码,proto表示将模型转为protobuf文件 models: # 一个配置文件可以包含多个模型的配置信息,最终生成的库中包含多个模型 first_net: # 模型的标签,在调度模型的时候,会用这个变量,必须唯一 platform: tensorflow model_file_path: path/to/model64.pb # also support http:// and https:// model_sha256_checksum: 7f7462333406e7dea87222737590ebb7d94490194d2f21a7d72bafa87e64e9f9 subgraphs: - input_tensors: input_node input_shapes: 1,64,64,3 output_tensors: output_node output_shapes: 1,64,64,2 runtime: gpu data_type: fp16_fp32 limit_opencl_kernel_time: 0 nnlib_graph_mode: 0 obfuscate: 1 winograd: 0 input_files: - path/to/input_files # support http:// second_net: platform: caffe model_file_path: path/to/model.prototxt weight_file_path: path/to/weight.caffemodel model_sha256_checksum: 05d92625809dc9edd6484882335c48c043397aed450a168d75eb8b538e86881a weight_sha256_checksum: 05d92625809dc9edd6484882335c48c043397aed450a168d75eb8b538e86881a subgraphs: - input_tensors: - input_node0 - input_node1 input_shapes: - 1,256,256,3 - 1,128,128,3 output_tensors: - output_node0 - output_node1 output_shapes: - 1,256,256,2 - 1,1,1,2 runtime: cpu limit_opencl_kernel_time: 1 nnlib_graph_mode: 0 obfuscate: 1 winograd: 0 input_files: - path/to/input_files # support http://