# Copyright 2018 The MACE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import onnx import sys from onnx import optimizer # Usage: python onnx_optimizer.py model.onnx model_opt.onnx def main(): if len(sys.argv) != 3: print "Usage: python onnx_optimizer.py model.onnx model_opt.onnx" sys.exit(0) in_path = sys.argv[1] out_path = sys.argv[2] original_model = onnx.load(in_path) print "Start optimize ONNX model for inference:" passes = ['eliminate_identity', 'fuse_consecutive_squeezes', 'fuse_consecutive_transposes', 'eliminate_nop_pad', 'eliminate_nop_transpose', 'eliminate_unused_initializer', 'extract_constant_to_initializer', 'fuse_add_bias_into_conv', 'fuse_bn_into_conv', 'fuse_transpose_into_gemm'] for i in range(len(passes)): print i, ".", passes[i] optimized_model = optimizer.optimize(original_model, passes) onnx.save_model(optimized_model, out_path) print "Optimize Finished!" print "Please check new model in:", out_path if __name__ == '__main__': main()