Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Xiaomi
Mace
提交
437da1ea
Mace
项目概览
Xiaomi
/
Mace
通知
107
Star
40
Fork
27
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
“1d0f9cc12f9df7a7efaa179c8e8d111018b934fd”上不存在“tools/python/transform/caffe_converter.py”
提交
437da1ea
编写于
4月 26, 2019
作者:
L
liuqi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support accuracy validation using python script as a plugin.
上级
3e9bb73e
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
502 addition
and
195 deletion
+502
-195
docs/user_guide/advanced_usage.rst
docs/user_guide/advanced_usage.rst
+15
-0
docs/user_guide/models/demo_models.yml
docs/user_guide/models/demo_models.yml
+4
-0
tools/accuracy_validator.py
tools/accuracy_validator.py
+153
-0
tools/common.py
tools/common.py
+1
-0
tools/converter.py
tools/converter.py
+10
-0
tools/device.py
tools/device.py
+265
-174
tools/sh_commands.py
tools/sh_commands.py
+54
-21
未找到文件。
docs/user_guide/advanced_usage.rst
浏览文件 @
437da1ea
...
@@ -76,6 +76,8 @@ in one deployment file.
...
@@ -76,6 +76,8 @@ in one deployment file.
- The numerical range of the input tensors' data, default [-1, 1]. It is only for test.
- The numerical range of the input tensors' data, default [-1, 1]. It is only for test.
* - validation_inputs_data
* - validation_inputs_data
- [optional] Specify Numpy validation inputs. When not provided, [-1, 1] random values will be used.
- [optional] Specify Numpy validation inputs. When not provided, [-1, 1] random values will be used.
* - accuracy_validation_script
- [optional] Specify the accuracy validation script as a plugin to test accuracy, see `doc <#validate-accuracy-of-mace-model>`__.
* - validation_threshold
* - validation_threshold
- [optional] Specify the similarity threshold for validation. A dict with key in 'CPU', 'GPU' and/or 'HEXAGON' and value <= 1.0.
- [optional] Specify the similarity threshold for validation. A dict with key in 'CPU', 'GPU' and/or 'HEXAGON' and value <= 1.0.
* - backend
* - backend
...
@@ -358,6 +360,19 @@ Tuning for specific SoC's GPU
...
@@ -358,6 +360,19 @@ Tuning for specific SoC's GPU
// ... Same with the code in basic usage.
// ... Same with the code in basic usage.
Validate accuracy of MACE model
-------------------------------
MACE supports **python validation script** as a plugin to test the accuracy, the plugin script could be used for below two purpose.
1. Test the **accuracy(like Top-1)** of MACE model(specifically quantization model) converted from other framework(like tensorflow)
2. Show some real output if you want to see it.
The script define some interfaces like `preprocess` and `postprocess` to deal with input/outut and calculate the accuracy,
you could refer to the `sample code <https://github.com/XiaoMi/mace/tree/master/tools/accuracy_validator.py>`__ for detail.
the sample code show how to calculate the Top-1 accuracy with imagenet validation dataset.
Useful Commands
Useful Commands
---------------
---------------
* **run the model**
* **run the model**
...
...
docs/user_guide/models/demo_models.yml
浏览文件 @
437da1ea
...
@@ -2,6 +2,8 @@
...
@@ -2,6 +2,8 @@
library_name
:
mobile_squeeze
library_name
:
mobile_squeeze
# host, armeabi-v7a or arm64-v8a
# host, armeabi-v7a or arm64-v8a
target_abis
:
[
arm64-v8a
]
target_abis
:
[
arm64-v8a
]
# soc's name or all
target_socs
:
[
all
]
# The build mode for model(s).
# The build mode for model(s).
# 'code' for transferring model(s) into cpp code, 'file' for keeping model(s) in protobuf file(s) (.pb).
# 'code' for transferring model(s) into cpp code, 'file' for keeping model(s) in protobuf file(s) (.pb).
model_graph_format
:
code
model_graph_format
:
code
...
@@ -43,6 +45,8 @@ models:
...
@@ -43,6 +45,8 @@ models:
-
prob
-
prob
output_shapes
:
output_shapes
:
-
1,1,1,1000
-
1,1,1,1000
accuracy_validation_script
:
-
path/to/your/script
runtime
:
cpu+gpu
runtime
:
cpu+gpu
limit_opencl_kernel_time
:
0
limit_opencl_kernel_time
:
0
obfuscate
:
0
obfuscate
:
0
...
...
tools/accuracy_validator.py
0 → 100644
浏览文件 @
437da1ea
# Copyright 2019 The MACE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os.path
import
numpy
as
np
from
PIL
import
Image
class
AccuracyValidator
(
object
):
"""Accuracy Validator Plugin:
Usage: This script is used to calculate the accuracy(like Top-1)
of MACE model.
User could reload this validator script to do
other accuracy validation(like MIOU for segmentation),
the new script's interface should be same
with current AccuracyValidator exactly,
Warning: Do not use relative path in this script.
"""
def
__init__
(
self
,
**
kwargs
):
# absolute path
validation_set_image_dir
=
\
'/path/to/your/validation/set/directory'
validation_set_label_file_path
=
\
'/path/to/imagenet_groundtruth_labels.txt'
black_list_file_path
=
\
'/path/to/imagenet_blacklist.txt'
imagenet_classes_file
=
\
'/path/to/imagenet_classes.txt'
self
.
_imagenet_classes
=
[
line
.
rstrip
(
'
\n
'
)
for
line
in
open
(
imagenet_classes_file
)]
imagenet_classes_map
=
{}
for
idx
in
range
(
len
(
self
.
_imagenet_classes
)):
imagenet_classes_map
[
self
.
_imagenet_classes
[
idx
]]
=
idx
black_list
=
[
int
(
line
.
rstrip
(
'
\n
'
))
for
line
in
open
(
black_list_file_path
)]
self
.
_samples
=
[]
self
.
_labels
=
[
0
]
# image id start from 1
self
.
_correct_count
=
0
for
img_file
in
os
.
listdir
(
validation_set_image_dir
):
if
img_file
.
endswith
(
".JPEG"
):
img_id
=
int
(
os
.
path
.
splitext
(
img_file
)[
0
].
split
(
'_'
)[
-
1
])
if
img_id
not
in
black_list
:
self
.
_samples
.
append
(
os
.
path
.
join
(
validation_set_image_dir
,
img_file
))
for
label
in
open
(
validation_set_label_file_path
):
label
=
label
.
rstrip
(
'
\n
'
)
self
.
_labels
.
append
(
imagenet_classes_map
[
label
])
def
sample_size
(
self
):
"""
:return: the size of samples in validation set
"""
return
len
(
self
.
_samples
)
def
batch_size
(
self
):
"""
batch size to do validation to speed up validation.
Keep same with batch size of input_shapes
in model deployment file(.yml). do not set too large
:return: batch size
"""
return
1
def
preprocess
(
self
,
sample_idx_start
,
sample_idx_end
,
**
kwargs
):
"""
pre-process the input sample
:param sample_idx_start: start index of the sample.
:param sample_idx_end: end index of the sample(not include).
:param kwargs: other parameters.
:return: the batched inputs' map(name: data) feed into your model
"""
inputs
=
{}
batch_sample_data
=
[]
sample_idx_end
=
min
(
sample_idx_end
,
self
.
sample_size
())
for
sample_idx
in
range
(
sample_idx_start
,
sample_idx_end
):
sample_file_path
=
self
.
_samples
[
sample_idx
]
sample_img
=
Image
.
open
(
sample_file_path
).
resize
((
224
,
224
))
sample_data
=
np
.
asarray
(
sample_img
,
dtype
=
np
.
float32
)
sample_data
=
(
2.0
/
255.0
)
*
sample_data
-
1.0
batch_sample_data
.
append
(
sample_data
.
tolist
())
inputs
[
"input"
]
=
batch_sample_data
return
inputs
def
postprocess
(
self
,
sample_idx_start
,
sample_idx_end
,
output_map
,
**
kwargs
):
"""
post-process the outputs of your model and calculate the accuracy
:param sample_idx_start: start index of input sample
:param sample_idx_end: end index of input sample
:param output_map: output map of the model
:param kwargs: other parameters.
:return: None
"""
output
=
output_map
[
'MobilenetV2/Predictions/Reshape_1'
]
sample_idx_end
=
min
(
sample_idx_end
,
self
.
sample_size
())
batch_size
=
sample_idx_end
-
sample_idx_start
output
=
np
.
array
(
output
).
reshape
((
batch_size
,
-
1
))
output
=
np
.
argmax
(
output
,
axis
=-
1
)
output_idx
=
0
for
sample_idx
in
range
(
sample_idx_start
,
sample_idx_end
):
sample_file_path
=
self
.
_samples
[
sample_idx
]
img_id
=
int
(
os
.
path
.
splitext
(
sample_file_path
)[
0
].
split
(
'_'
)[
-
1
])
if
output
[
output_idx
]
==
self
.
_labels
[
img_id
]:
self
.
_correct_count
+=
1
else
:
print
(
img_id
,
'predict %s vs gt %s'
%
(
self
.
_imagenet_classes
[
output
[
output_idx
]],
self
.
_imagenet_classes
[
self
.
_labels
[
img_id
]]))
output_idx
+=
1
def
result
(
self
):
"""
print or show the result
:return: None
"""
print
(
"=========================================="
)
print
(
"Top 1 accuracy: %f"
%
(
self
.
_correct_count
*
1.0
/
self
.
sample_size
()))
print
(
"=========================================="
)
if
__name__
==
'__main__'
:
# sample usage code
validator
=
AccuracyValidator
()
sample_size
=
validator
.
sample_size
()
val_batch_size
=
validator
.
batch_size
()
for
i
in
range
(
0
,
sample_size
,
val_batch_size
):
inputs
=
validator
.
preprocess
(
i
,
i
+
val_batch_size
)
print
(
np
.
array
(
inputs
[
'input'
]).
shape
)
output_map
=
{
'MobilenetV2/Predictions/Reshape_1'
:
np
.
array
([[
0
,
1
],
[
1
,
0
]])
}
validator
.
postprocess
(
i
,
i
+
val_batch_size
,
output_map
)
validator
.
result
()
tools/common.py
浏览文件 @
437da1ea
...
@@ -413,6 +413,7 @@ class YAMLKeyword(object):
...
@@ -413,6 +413,7 @@ class YAMLKeyword(object):
cl_mem_type
=
'cl_mem_type'
cl_mem_type
=
'cl_mem_type'
backend
=
'backend'
backend
=
'backend'
validation_outputs_data
=
'validation_outputs_data'
validation_outputs_data
=
'validation_outputs_data'
accuracy_validation_script
=
'accuracy_validation_script'
docker_image_tag
=
'docker_image_tag'
docker_image_tag
=
'docker_image_tag'
dockerfile_path
=
'dockerfile_path'
dockerfile_path
=
'dockerfile_path'
dockerfile_sha256_checksum
=
'dockerfile_sha256_checksum'
dockerfile_sha256_checksum
=
'dockerfile_sha256_checksum'
...
...
tools/converter.py
浏览文件 @
437da1ea
...
@@ -532,6 +532,16 @@ def format_model_config(flags):
...
@@ -532,6 +532,16 @@ def format_model_config(flags):
subgraph
[
YAMLKeyword
.
input_ranges
]
=
\
subgraph
[
YAMLKeyword
.
input_ranges
]
=
\
[
str
(
v
)
for
v
in
subgraph
[
YAMLKeyword
.
input_ranges
]]
[
str
(
v
)
for
v
in
subgraph
[
YAMLKeyword
.
input_ranges
]]
accuracy_validation_script
=
subgraph
.
get
(
YAMLKeyword
.
accuracy_validation_script
,
""
)
if
isinstance
(
accuracy_validation_script
,
list
):
mace_check
(
len
(
accuracy_validation_script
)
==
1
,
ModuleName
.
YAML_CONFIG
,
"Only support one accuracy validation script"
)
accuracy_validation_script
=
accuracy_validation_script
[
0
]
subgraph
[
YAMLKeyword
.
accuracy_validation_script
]
=
\
accuracy_validation_script
for
key
in
[
YAMLKeyword
.
limit_opencl_kernel_time
,
for
key
in
[
YAMLKeyword
.
limit_opencl_kernel_time
,
YAMLKeyword
.
nnlib_graph_mode
,
YAMLKeyword
.
nnlib_graph_mode
,
YAMLKeyword
.
obfuscate
,
YAMLKeyword
.
obfuscate
,
...
...
tools/device.py
浏览文件 @
437da1ea
...
@@ -12,6 +12,7 @@
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
numpy
as
np
import
os
import
os
import
sys
import
sys
import
socket
import
socket
...
@@ -387,7 +388,7 @@ class DeviceWrapper:
...
@@ -387,7 +388,7 @@ class DeviceWrapper:
subgraphs
=
model_config
[
YAMLKeyword
.
subgraphs
]
subgraphs
=
model_config
[
YAMLKeyword
.
subgraphs
]
# generate input data
# generate input data
sh_commands
.
gen_
random_
input
(
sh_commands
.
gen_input
(
model_output_dir
,
model_output_dir
,
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
...
@@ -460,18 +461,14 @@ class DeviceWrapper:
...
@@ -460,18 +461,14 @@ class DeviceWrapper:
return
output_configs
return
output_configs
def
run_specify_abi
(
self
,
flags
,
configs
,
target_abi
):
def
run_model
(
self
,
flags
,
configs
,
target_abi
,
if
target_abi
not
in
self
.
target_abis
:
model_name
,
output_config
,
runtime
,
tuning
):
six
.
print_
(
'The device %s with soc %s do not support the abi %s'
%
(
self
.
device_name
,
self
.
target_socs
,
target_abi
))
return
library_name
=
configs
[
YAMLKeyword
.
library_name
]
library_name
=
configs
[
YAMLKeyword
.
library_name
]
mace_lib_type
=
flags
.
mace_lib_type
embed_model_data
=
\
embed_model_data
=
\
configs
[
YAMLKeyword
.
model_data_format
]
==
ModelFormat
.
code
configs
[
YAMLKeyword
.
model_data_format
]
==
ModelFormat
.
code
build_tmp_binary_dir
=
get_build_binary_dir
(
library_name
,
target_abi
)
build_tmp_binary_dir
=
get_build_binary_dir
(
library_name
,
target_abi
)
# get target name for run
# get target name for run
mace_lib_type
=
flags
.
mace_lib_type
if
flags
.
example
:
if
flags
.
example
:
if
mace_lib_type
==
MACELibType
.
static
:
if
mace_lib_type
==
MACELibType
.
static
:
target_name
=
EXAMPLE_STATIC_NAME
target_name
=
EXAMPLE_STATIC_NAME
...
@@ -483,6 +480,114 @@ class DeviceWrapper:
...
@@ -483,6 +480,114 @@ class DeviceWrapper:
else
:
else
:
target_name
=
MACE_RUN_DYNAMIC_NAME
target_name
=
MACE_RUN_DYNAMIC_NAME
link_dynamic
=
mace_lib_type
==
MACELibType
.
dynamic
link_dynamic
=
mace_lib_type
==
MACELibType
.
dynamic
if
target_abi
!=
ABIType
.
host
:
self
.
clear_data_dir
()
model_config
=
configs
[
YAMLKeyword
.
models
][
model_name
]
subgraphs
=
model_config
[
YAMLKeyword
.
subgraphs
]
model_output_base_dir
,
model_output_dir
,
mace_model_dir
=
\
get_build_model_dirs
(
library_name
,
model_name
,
target_abi
,
self
,
model_config
[
YAMLKeyword
.
model_file_path
])
model_opencl_output_bin_path
=
''
model_opencl_parameter_path
=
''
if
tuning
:
model_opencl_output_bin_path
=
\
'{}/{}/{}'
.
format
(
model_output_dir
,
BUILD_TMP_OPENCL_BIN_DIR
,
CL_COMPILED_BINARY_FILE_NAME
)
model_opencl_parameter_path
=
\
'{}/{}/{}'
.
format
(
model_output_dir
,
BUILD_TMP_OPENCL_BIN_DIR
,
CL_TUNED_PARAMETER_FILE_NAME
)
elif
target_abi
!=
ABIType
.
host
and
self
.
target_socs
:
model_opencl_output_bin_path
=
get_opencl_binary_output_path
(
library_name
,
target_abi
,
self
)
model_opencl_parameter_path
=
get_opencl_parameter_output_path
(
library_name
,
target_abi
,
self
)
# run for specified soc
device_type
=
parse_device_type
(
runtime
)
self
.
tuning_run
(
abi
=
target_abi
,
target_dir
=
build_tmp_binary_dir
,
target_name
=
target_name
,
vlog_level
=
flags
.
vlog_level
,
embed_model_data
=
embed_model_data
,
model_output_dir
=
model_output_dir
,
input_nodes
=
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
output_nodes
=
output_config
[
YAMLKeyword
.
output_tensors
],
input_shapes
=
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
output_shapes
=
output_config
[
YAMLKeyword
.
output_shapes
],
input_data_formats
=
subgraphs
[
0
][
YAMLKeyword
.
input_data_formats
],
output_data_formats
=
subgraphs
[
0
][
YAMLKeyword
.
output_data_formats
],
mace_model_dir
=
mace_model_dir
,
model_tag
=
model_name
,
device_type
=
device_type
,
running_round
=
flags
.
round
,
restart_round
=
flags
.
restart_round
,
limit_opencl_kernel_time
=
model_config
[
YAMLKeyword
.
limit_opencl_kernel_time
],
tuning
=
False
,
out_of_range_check
=
flags
.
gpu_out_of_range_check
,
model_graph_format
=
configs
[
YAMLKeyword
.
model_graph_format
],
omp_num_threads
=
flags
.
omp_num_threads
,
cpu_affinity_policy
=
flags
.
cpu_affinity_policy
,
gpu_perf_hint
=
flags
.
gpu_perf_hint
,
gpu_priority_hint
=
flags
.
gpu_priority_hint
,
runtime_failure_ratio
=
flags
.
runtime_failure_ratio
,
address_sanitizer
=
flags
.
address_sanitizer
,
opencl_binary_file
=
model_opencl_output_bin_path
,
opencl_parameter_file
=
model_opencl_parameter_path
,
libmace_dynamic_library_path
=
LIBMACE_DYNAMIC_PATH
,
link_dynamic
=
link_dynamic
,
quantize_stat
=
flags
.
quantize_stat
,
input_dir
=
flags
.
input_dir
,
output_dir
=
flags
.
output_dir
,
layers_validate_file
=
output_config
[
YAMLKeyword
.
model_file_path
]
)
def
get_output_map
(
self
,
target_abi
,
output_nodes
,
output_shapes
,
model_output_dir
):
output_map
=
{}
for
i
in
range
(
len
(
output_nodes
)):
output_name
=
output_nodes
[
i
]
formatted_name
=
common
.
formatted_file_name
(
"model_out"
,
output_name
)
if
target_abi
!=
"host"
:
if
os
.
path
.
exists
(
"%s/%s"
%
(
model_output_dir
,
formatted_name
)):
sh
.
rm
(
"-rf"
,
"%s/%s"
%
(
model_output_dir
,
formatted_name
))
self
.
pull_from_data_dir
(
formatted_name
,
model_output_dir
)
output_file_path
=
os
.
path
.
join
(
model_output_dir
,
formatted_name
)
output_shape
=
[
int
(
x
)
for
x
in
common
.
split_shape
(
output_shapes
[
i
])]
output_map
[
output_name
]
=
np
.
fromfile
(
output_file_path
,
dtype
=
np
.
float32
).
reshape
(
output_shape
)
return
output_map
def
run_specify_abi
(
self
,
flags
,
configs
,
target_abi
):
if
target_abi
not
in
self
.
target_abis
:
six
.
print_
(
'The device %s with soc %s do not support the abi %s'
%
(
self
.
device_name
,
self
.
target_socs
,
target_abi
))
return
library_name
=
configs
[
YAMLKeyword
.
library_name
]
model_output_dirs
=
[]
model_output_dirs
=
[]
for
model_name
in
configs
[
YAMLKeyword
.
models
]:
for
model_name
in
configs
[
YAMLKeyword
.
models
]:
...
@@ -510,9 +615,7 @@ class DeviceWrapper:
...
@@ -510,9 +615,7 @@ class DeviceWrapper:
sh
.
rm
(
'-rf'
,
model_output_dir
)
sh
.
rm
(
'-rf'
,
model_output_dir
)
os
.
makedirs
(
model_output_dir
)
os
.
makedirs
(
model_output_dir
)
is_tuned
=
False
tuning
=
False
model_opencl_output_bin_path
=
''
model_opencl_parameter_path
=
''
if
not
flags
.
address_sanitizer
\
if
not
flags
.
address_sanitizer
\
and
not
flags
.
example
\
and
not
flags
.
example
\
and
target_abi
!=
ABIType
.
host
\
and
target_abi
!=
ABIType
.
host
\
...
@@ -525,33 +628,36 @@ class DeviceWrapper:
...
@@ -525,33 +628,36 @@ class DeviceWrapper:
self
.
tuning
(
library_name
,
model_name
,
model_config
,
self
.
tuning
(
library_name
,
model_name
,
model_config
,
configs
[
YAMLKeyword
.
model_graph_format
],
configs
[
YAMLKeyword
.
model_graph_format
],
configs
[
YAMLKeyword
.
model_data_format
],
configs
[
YAMLKeyword
.
model_data_format
],
target_abi
,
mace_lib_type
)
target_abi
,
flags
.
mace_lib_type
)
model_output_dirs
.
append
(
model_output_dir
)
model_output_dirs
.
append
(
model_output_dir
)
model_opencl_output_bin_path
=
\
'{}/{}/{}'
.
format
(
model_output_dir
,
BUILD_TMP_OPENCL_BIN_DIR
,
CL_COMPILED_BINARY_FILE_NAME
)
model_opencl_parameter_path
=
\
'{}/{}/{}'
.
format
(
model_output_dir
,
BUILD_TMP_OPENCL_BIN_DIR
,
CL_TUNED_PARAMETER_FILE_NAME
)
self
.
clear_data_dir
()
self
.
clear_data_dir
()
is_tuned
=
True
tuning
=
True
elif
target_abi
!=
ABIType
.
host
and
self
.
target_socs
:
model_opencl_output_bin_path
=
get_opencl_binary_output_path
(
accuracy_validation_script
=
\
library_name
,
target_abi
,
self
subgraphs
[
0
][
YAMLKeyword
.
accuracy_validation_script
]
)
output_configs
=
[]
model_opencl_parameter_path
=
get_opencl_parameter_output_path
(
if
not
accuracy_validation_script
and
flags
.
layers
!=
"-1"
:
library_name
,
target_abi
,
self
mace_check
(
configs
[
YAMLKeyword
.
model_graph_format
]
==
)
ModelFormat
.
file
and
sh_commands
.
gen_random_input
(
configs
[
YAMLKeyword
.
model_data_format
]
==
model_output_dir
,
ModelFormat
.
file
,
"Device"
,
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
"'--layers' only supports model format 'file'."
)
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
output_configs
=
self
.
get_layers
(
mace_model_dir
,
subgraphs
[
0
][
YAMLKeyword
.
validation_inputs_data
],
model_name
,
input_ranges
=
subgraphs
[
0
][
YAMLKeyword
.
input_ranges
],
flags
.
layers
)
input_data_types
=
subgraphs
[
0
][
YAMLKeyword
.
input_data_types
]
# run for specified soc
)
if
not
subgraphs
[
0
][
YAMLKeyword
.
check_tensors
]:
output_nodes
=
subgraphs
[
0
][
YAMLKeyword
.
output_tensors
]
output_shapes
=
subgraphs
[
0
][
YAMLKeyword
.
output_shapes
]
else
:
output_nodes
=
subgraphs
[
0
][
YAMLKeyword
.
check_tensors
]
output_shapes
=
subgraphs
[
0
][
YAMLKeyword
.
check_shapes
]
model_path
=
"%s/%s.pb"
%
(
mace_model_dir
,
model_name
)
output_config
=
{
YAMLKeyword
.
model_file_path
:
model_path
,
YAMLKeyword
.
output_tensors
:
output_nodes
,
YAMLKeyword
.
output_shapes
:
output_shapes
}
output_configs
.
append
(
output_config
)
runtime_list
=
[]
runtime_list
=
[]
if
target_abi
==
ABIType
.
host
:
if
target_abi
==
ABIType
.
host
:
runtime_list
.
append
(
RuntimeType
.
cpu
)
runtime_list
.
append
(
RuntimeType
.
cpu
)
...
@@ -559,143 +665,128 @@ class DeviceWrapper:
...
@@ -559,143 +665,128 @@ class DeviceWrapper:
runtime_list
.
extend
([
RuntimeType
.
cpu
,
RuntimeType
.
gpu
])
runtime_list
.
extend
([
RuntimeType
.
cpu
,
RuntimeType
.
gpu
])
else
:
else
:
runtime_list
.
append
(
model_runtime
)
runtime_list
.
append
(
model_runtime
)
for
runtime
in
runtime_list
:
if
accuracy_validation_script
:
device_type
=
parse_device_type
(
runtime
)
flags
.
validate
=
False
# run for specified soc
flags
.
report
=
False
if
not
subgraphs
[
0
][
YAMLKeyword
.
check_tensors
]:
output_nodes
=
subgraphs
[
0
][
YAMLKeyword
.
output_tensors
]
import
imp
output_shapes
=
subgraphs
[
0
][
YAMLKeyword
.
output_shapes
]
accuracy_val_module
=
imp
.
load_source
(
else
:
'accuracy_val_module'
,
output_nodes
=
subgraphs
[
0
][
YAMLKeyword
.
check_tensors
]
accuracy_validation_script
)
output_shapes
=
subgraphs
[
0
][
YAMLKeyword
.
check_shapes
]
for
runtime
in
runtime_list
:
output_configs
=
[]
accuracy_validator
=
\
log_file
=
""
accuracy_val_module
.
AccuracyValidator
()
if
flags
.
layers
!=
"-1"
:
sample_size
=
accuracy_validator
.
sample_size
()
mace_check
(
configs
[
YAMLKeyword
.
model_graph_format
]
==
val_batch_size
=
accuracy_validator
.
batch_size
()
ModelFormat
.
file
and
for
i
in
range
(
0
,
sample_size
,
val_batch_size
):
configs
[
YAMLKeyword
.
model_data_format
]
==
inputs
=
accuracy_validator
.
preprocess
(
ModelFormat
.
file
,
"Device"
,
i
,
i
+
val_batch_size
)
"'--layers' only supports model format 'file'."
)
sh_commands
.
gen_input
(
output_configs
=
self
.
get_layers
(
mace_model_dir
,
model_output_dir
,
model_name
,
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
flags
.
layers
)
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
log_dir
=
mace_model_dir
+
"/"
+
runtime
input_data_types
=
subgraphs
[
0
][
YAMLKeyword
.
input_data_types
],
# noqa
if
os
.
path
.
exists
(
log_dir
):
input_data_map
=
inputs
)
sh
.
rm
(
'-rf'
,
log_dir
)
os
.
makedirs
(
log_dir
)
self
.
run_model
(
flags
,
configs
,
target_abi
,
model_name
,
log_file
=
log_dir
+
"/log.csv"
output_configs
[
-
1
],
runtime
,
tuning
)
model_path
=
"%s/%s.pb"
%
(
mace_model_dir
,
model_name
)
accuracy_validator
.
postprocess
(
output_config
=
{
YAMLKeyword
.
model_file_path
:
model_path
,
i
,
i
+
val_batch_size
,
YAMLKeyword
.
output_tensors
:
output_nodes
,
self
.
get_output_map
(
YAMLKeyword
.
output_shapes
:
output_shapes
}
target_abi
,
output_configs
.
append
(
output_config
)
output_nodes
,
for
output_config
in
output_configs
:
subgraphs
[
0
][
YAMLKeyword
.
output_shapes
],
run_output
=
self
.
tuning_run
(
model_output_dir
))
abi
=
target_abi
,
accuracy_validator
.
result
()
target_dir
=
build_tmp_binary_dir
,
else
:
target_name
=
target_name
,
sh_commands
.
gen_input
(
vlog_level
=
flags
.
vlog_level
,
model_output_dir
,
embed_model_data
=
embed_model_data
,
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
model_output_dir
=
model_output_dir
,
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
input_nodes
=
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
subgraphs
[
0
][
YAMLKeyword
.
validation_inputs_data
],
output_nodes
=
output_config
[
input_ranges
=
subgraphs
[
0
][
YAMLKeyword
.
input_ranges
],
YAMLKeyword
.
output_tensors
],
input_data_types
=
subgraphs
[
0
][
YAMLKeyword
.
input_data_types
]
input_shapes
=
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
)
output_shapes
=
output_config
[
YAMLKeyword
.
output_shapes
],
for
runtime
in
runtime_list
:
input_data_formats
=
subgraphs
[
0
][
device_type
=
parse_device_type
(
runtime
)
YAMLKeyword
.
input_data_formats
],
for
output_config
in
output_configs
:
output_data_formats
=
subgraphs
[
0
][
self
.
run_model
(
flags
,
configs
,
target_abi
,
model_name
,
YAMLKeyword
.
output_data_formats
],
output_config
,
runtime
,
tuning
)
mace_model_dir
=
mace_model_dir
,
if
flags
.
validate
:
model_tag
=
model_name
,
log_file
=
""
device_type
=
device_type
,
if
flags
.
layers
!=
"-1"
:
running_round
=
flags
.
round
,
log_dir
=
mace_model_dir
+
"/"
+
runtime
restart_round
=
flags
.
restart_round
,
if
os
.
path
.
exists
(
log_dir
):
limit_opencl_kernel_time
=
model_config
[
sh
.
rm
(
'-rf'
,
log_dir
)
YAMLKeyword
.
limit_opencl_kernel_time
],
os
.
makedirs
(
log_dir
)
tuning
=
False
,
log_file
=
log_dir
+
"/log.csv"
out_of_range_check
=
flags
.
gpu_out_of_range_check
,
model_file_path
,
weight_file_path
=
\
model_graph_format
=
configs
[
get_model_files
(
YAMLKeyword
.
model_graph_format
],
model_config
[
YAMLKeyword
.
model_file_path
],
omp_num_threads
=
flags
.
omp_num_threads
,
model_config
[
cpu_affinity_policy
=
flags
.
cpu_affinity_policy
,
YAMLKeyword
.
model_sha256_checksum
],
gpu_perf_hint
=
flags
.
gpu_perf_hint
,
BUILD_DOWNLOADS_DIR
,
gpu_priority_hint
=
flags
.
gpu_priority_hint
,
model_config
[
YAMLKeyword
.
weight_file_path
],
runtime_failure_ratio
=
flags
.
runtime_failure_ratio
,
model_config
[
address_sanitizer
=
flags
.
address_sanitizer
,
YAMLKeyword
.
weight_sha256_checksum
])
opencl_binary_file
=
model_opencl_output_bin_path
,
validate_type
=
device_type
opencl_parameter_file
=
model_opencl_parameter_path
,
if
model_config
[
YAMLKeyword
.
quantize
]
==
1
:
libmace_dynamic_library_path
=
LIBMACE_DYNAMIC_PATH
,
validate_type
=
device_type
+
'_QUANTIZE'
link_dynamic
=
link_dynamic
,
quantize_stat
=
flags
.
quantize_stat
,
dockerfile_path
,
docker_image_tag
=
\
input_dir
=
flags
.
input_dir
,
get_dockerfile_info
(
output_dir
=
flags
.
output_dir
,
model_config
.
get
(
layers_validate_file
=
output_config
[
YAMLKeyword
.
dockerfile_path
),
YAMLKeyword
.
model_file_path
]
model_config
.
get
(
)
YAMLKeyword
.
dockerfile_sha256_checksum
),
# noqa
if
flags
.
validate
:
model_config
.
get
(
model_file_path
,
weight_file_path
=
get_model_files
(
YAMLKeyword
.
docker_image_tag
)
model_config
[
YAMLKeyword
.
model_file_path
],
)
if
YAMLKeyword
.
dockerfile_path
\
model_config
[
YAMLKeyword
.
model_sha256_checksum
],
in
model_config
\
BUILD_DOWNLOADS_DIR
,
else
(
"third_party/caffe"
,
"lastest"
)
model_config
[
YAMLKeyword
.
weight_file_path
],
model_config
[
YAMLKeyword
.
weight_sha256_checksum
]
sh_commands
.
validate_model
(
)
abi
=
target_abi
,
validate_type
=
device_type
device
=
self
,
if
model_config
[
YAMLKeyword
.
quantize
]
==
1
:
model_file_path
=
model_file_path
,
validate_type
=
device_type
+
'_QUANTIZE'
weight_file_path
=
weight_file_path
,
docker_image_tag
=
docker_image_tag
,
dockerfile_path
,
docker_image_tag
=
\
dockerfile_path
=
dockerfile_path
,
get_dockerfile_info
(
platform
=
model_config
[
YAMLKeyword
.
platform
],
model_config
.
get
(
YAMLKeyword
.
dockerfile_path
),
device_type
=
device_type
,
model_config
.
get
(
input_nodes
=
subgraphs
[
0
][
YAMLKeyword
.
dockerfile_sha256_checksum
),
YAMLKeyword
.
input_tensors
],
model_config
.
get
(
YAMLKeyword
.
docker_image_tag
)
output_nodes
=
output_config
[
)
if
YAMLKeyword
.
dockerfile_path
in
model_config
\
YAMLKeyword
.
output_tensors
],
else
(
"third_party/caffe"
,
"lastest"
)
input_shapes
=
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
sh_commands
.
validate_model
(
output_shapes
=
output_config
[
abi
=
target_abi
,
YAMLKeyword
.
output_shapes
],
device
=
self
,
input_data_formats
=
subgraphs
[
0
][
model_file_path
=
model_file_path
,
YAMLKeyword
.
input_data_formats
],
weight_file_path
=
weight_file_path
,
output_data_formats
=
subgraphs
[
0
][
docker_image_tag
=
docker_image_tag
,
YAMLKeyword
.
output_data_formats
],
dockerfile_path
=
dockerfile_path
,
model_output_dir
=
model_output_dir
,
platform
=
model_config
[
YAMLKeyword
.
platform
],
input_data_types
=
subgraphs
[
0
][
device_type
=
device_type
,
YAMLKeyword
.
input_data_types
],
input_nodes
=
subgraphs
[
0
][
caffe_env
=
flags
.
caffe_env
,
YAMLKeyword
.
input_tensors
],
validation_threshold
=
subgraphs
[
0
][
output_nodes
=
output_config
[
YAMLKeyword
.
validation_threshold
][
YAMLKeyword
.
output_tensors
],
validate_type
],
input_shapes
=
subgraphs
[
0
][
backend
=
subgraphs
[
0
][
YAMLKeyword
.
backend
],
YAMLKeyword
.
input_shapes
],
validation_outputs_data
=
subgraphs
[
0
][
output_shapes
=
output_config
[
YAMLKeyword
.
validation_outputs_data
],
YAMLKeyword
.
output_shapes
],
log_file
=
log_file
,
input_data_formats
=
subgraphs
[
0
][
)
YAMLKeyword
.
input_data_formats
],
if
flags
.
report
and
flags
.
round
>
0
:
output_data_formats
=
subgraphs
[
0
][
tuned
=
tuning
and
device_type
==
DeviceType
.
GPU
YAMLKeyword
.
output_data_formats
],
self
.
report_run_statistics
(
model_output_dir
=
model_output_dir
,
target_abi
=
target_abi
,
input_data_types
=
subgraphs
[
0
][
model_name
=
model_name
,
YAMLKeyword
.
input_data_types
],
device_type
=
device_type
,
caffe_env
=
flags
.
caffe_env
,
output_dir
=
flags
.
report_dir
,
validation_threshold
=
subgraphs
[
0
][
tuned
=
tuned
)
YAMLKeyword
.
validation_threshold
][
validate_type
],
backend
=
subgraphs
[
0
][
YAMLKeyword
.
backend
],
validation_outputs_data
=
subgraphs
[
0
][
YAMLKeyword
.
validation_outputs_data
],
log_file
=
log_file
,
)
if
flags
.
report
and
flags
.
round
>
0
:
tuned
=
is_tuned
and
device_type
==
DeviceType
.
GPU
self
.
report_run_statistics
(
target_abi
=
target_abi
,
model_name
=
model_name
,
device_type
=
device_type
,
output_dir
=
flags
.
report_dir
,
tuned
=
tuned
)
if
model_output_dirs
:
if
model_output_dirs
:
opencl_output_bin_path
=
get_opencl_binary_output_path
(
opencl_output_bin_path
=
get_opencl_binary_output_path
(
library_name
,
target_abi
,
self
library_name
,
target_abi
,
self
...
@@ -956,7 +1047,7 @@ class DeviceWrapper:
...
@@ -956,7 +1047,7 @@ class DeviceWrapper:
if
target_abi
!=
ABIType
.
host
:
if
target_abi
!=
ABIType
.
host
:
self
.
clear_data_dir
()
self
.
clear_data_dir
()
sh_commands
.
gen_
random_
input
(
sh_commands
.
gen_input
(
model_output_dir
,
model_output_dir
,
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
subgraphs
[
0
][
YAMLKeyword
.
input_tensors
],
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
subgraphs
[
0
][
YAMLKeyword
.
input_shapes
],
...
...
tools/sh_commands.py
浏览文件 @
437da1ea
...
@@ -549,42 +549,64 @@ def gen_model_code(model_codegen_dir,
...
@@ -549,42 +549,64 @@ def gen_model_code(model_codegen_dir,
_fg
=
True
)
_fg
=
True
)
def
gen_random_input
(
model_output_dir
,
def
gen_input
(
model_output_dir
,
input_nodes
,
input_nodes
,
input_shapes
,
input_shapes
,
input_files
,
input_files
=
None
,
input_ranges
,
input_ranges
=
None
,
input_data_types
,
input_data_types
=
None
,
input_file_name
=
"model_input"
):
input_data_map
=
None
,
input_file_name
=
"model_input"
):
for
input_name
in
input_nodes
:
for
input_name
in
input_nodes
:
formatted_name
=
common
.
formatted_file_name
(
formatted_name
=
common
.
formatted_file_name
(
input_file_name
,
input_name
)
input_file_name
,
input_name
)
if
os
.
path
.
exists
(
"%s/%s"
%
(
model_output_dir
,
formatted_name
)):
if
os
.
path
.
exists
(
"%s/%s"
%
(
model_output_dir
,
formatted_name
)):
sh
.
rm
(
"%s/%s"
%
(
model_output_dir
,
formatted_name
))
sh
.
rm
(
"%s/%s"
%
(
model_output_dir
,
formatted_name
))
input_nodes_str
=
","
.
join
(
input_nodes
)
input_shapes_str
=
":"
.
join
(
input_shapes
)
input_ranges_str
=
":"
.
join
(
input_ranges
)
input_data_types_str
=
","
.
join
(
input_data_types
)
generate_input_data
(
"%s/%s"
%
(
model_output_dir
,
input_file_name
),
input_nodes_str
,
input_shapes_str
,
input_ranges_str
,
input_data_types_str
)
input_file_list
=
[]
input_file_list
=
[]
if
isinstance
(
input_files
,
list
):
if
isinstance
(
input_files
,
list
):
input_file_list
.
extend
(
input_files
)
input_file_list
.
extend
(
input_files
)
else
:
else
:
input_file_list
.
append
(
input_files
)
input_file_list
.
append
(
input_files
)
if
len
(
input_file_list
)
!=
0
:
if
input_data_map
:
for
i
in
range
(
len
(
input_nodes
)):
dst_input_file
=
model_output_dir
+
'/'
+
\
common
.
formatted_file_name
(
input_file_name
,
input_nodes
[
i
])
input_name
=
input_nodes
[
i
]
common
.
mace_check
(
input_name
in
input_data_map
,
common
.
ModuleName
.
RUN
,
"The preprocessor API in PrecisionValidator"
" script should return all inputs of model"
)
if
input_data_types
[
i
]
==
'float32'
:
input_data
=
np
.
array
(
input_data_map
[
input_name
],
dtype
=
np
.
float32
)
elif
input_data_types
[
i
]
==
'int32'
:
input_data
=
np
.
array
(
input_data_map
[
input_name
],
dtype
=
np
.
int32
)
else
:
common
.
mace_check
(
False
,
common
.
ModuleName
.
RUN
,
'Do not support input data type %s'
%
input_data_types
[
i
])
common
.
mace_check
(
list
(
map
(
int
,
common
.
split_shape
(
input_shapes
[
i
])))
==
list
(
input_data
.
shape
),
common
.
ModuleName
.
RUN
,
"The shape return from preprocessor API of"
" PrecisionValidator script is not same with"
" model deployment file. %s vs %s"
%
(
str
(
input_shapes
[
i
]),
str
(
input_data
.
shape
)))
input_data
.
tofile
(
dst_input_file
)
elif
len
(
input_file_list
)
!=
0
:
input_name_list
=
[]
input_name_list
=
[]
if
isinstance
(
input_nodes
,
list
):
if
isinstance
(
input_nodes
,
list
):
input_name_list
.
extend
(
input_nodes
)
input_name_list
.
extend
(
input_nodes
)
else
:
else
:
input_name_list
.
append
(
input_nodes
)
input_name_list
.
append
(
input_nodes
)
if
len
(
input_file_list
)
!=
len
(
input_name_list
):
common
.
mace_check
(
len
(
input_file_list
)
==
len
(
input_name_list
),
raise
Exception
(
'If input_files set, the input files should '
common
.
ModuleName
.
RUN
,
'match the input names.'
)
'If input_files set, the input files should '
'match the input names.'
)
for
i
in
range
(
len
(
input_file_list
)):
for
i
in
range
(
len
(
input_file_list
)):
if
input_file_list
[
i
]
is
not
None
:
if
input_file_list
[
i
]
is
not
None
:
dst_input_file
=
model_output_dir
+
'/'
+
\
dst_input_file
=
model_output_dir
+
'/'
+
\
...
@@ -596,6 +618,17 @@ def gen_random_input(model_output_dir,
...
@@ -596,6 +618,17 @@ def gen_random_input(model_output_dir,
dst_input_file
)
dst_input_file
)
else
:
else
:
sh
.
cp
(
"-f"
,
input_file_list
[
i
],
dst_input_file
)
sh
.
cp
(
"-f"
,
input_file_list
[
i
],
dst_input_file
)
else
:
# generate random input files
input_nodes_str
=
","
.
join
(
input_nodes
)
input_shapes_str
=
":"
.
join
(
input_shapes
)
input_ranges_str
=
":"
.
join
(
input_ranges
)
input_data_types_str
=
","
.
join
(
input_data_types
)
generate_input_data
(
"%s/%s"
%
(
model_output_dir
,
input_file_name
),
input_nodes_str
,
input_shapes_str
,
input_ranges_str
,
input_data_types_str
)
def
gen_opencl_binary_cpps
(
opencl_bin_file_path
,
def
gen_opencl_binary_cpps
(
opencl_bin_file_path
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录