Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Xiaomi
Mace
提交
2b180489
Mace
项目概览
Xiaomi
/
Mace
通知
107
Star
40
Fork
27
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
2b180489
编写于
3月 15, 2018
作者:
L
Liangliang He
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove half source dependency
上级
cedb6e8d
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
50 addition
and
3089 deletion
+50
-3089
WORKSPACE
WORKSPACE
+7
-0
mace/core/BUILD
mace/core/BUILD
+1
-0
mace/core/half.h
mace/core/half.h
+0
-3067
mace/core/types.h
mace/core/types.h
+1
-1
mace/kernels/activation.h
mace/kernels/activation.h
+1
-1
mace/kernels/pooling.h
mace/kernels/pooling.h
+1
-1
mace/ops/activation.h
mace/ops/activation.h
+2
-1
mace/ops/depthwise_conv2d_test.cc
mace/ops/depthwise_conv2d_test.cc
+19
-17
mace/ops/ops_test_util.h
mace/ops/ops_test_util.h
+10
-0
mace/third_party/half.BUILD
mace/third_party/half.BUILD
+7
-0
mace/third_party/opencl-clhpp.BUILD
mace/third_party/opencl-clhpp.BUILD
+1
-1
未找到文件。
WORKSPACE
浏览文件 @
2b180489
...
@@ -58,6 +58,13 @@ new_git_repository(
...
@@ -58,6 +58,13 @@ new_git_repository(
remote
=
"https://github.com/KhronosGroup/OpenCL-CLHPP.git"
,
remote
=
"https://github.com/KhronosGroup/OpenCL-CLHPP.git"
,
)
)
new_git_repository
(
name
=
"half"
,
build_file
=
"mace/third_party/half.BUILD"
,
commit
=
"87d7f25f7ba2c7d3b051f6c857031de0ecac5afd"
,
remote
=
"http://v9.git.n.xiaomi.com/deep-computing/half.git"
,
)
git_repository
(
git_repository
(
name
=
"com_github_gflags_gflags"
,
name
=
"com_github_gflags_gflags"
,
#tag = "v2.2.0",
#tag = "v2.2.0",
...
...
mace/core/BUILD
浏览文件 @
2b180489
...
@@ -52,6 +52,7 @@ cc_library(
...
@@ -52,6 +52,7 @@ cc_library(
":opencl_headers"
,
":opencl_headers"
,
"//mace/utils"
,
"//mace/utils"
,
"//mace/codegen:generated_version"
,
"//mace/codegen:generated_version"
,
"@half//:half"
,
]
+
if_production_mode
([
]
+
if_production_mode
([
"//mace/utils:utils_prod"
,
"//mace/utils:utils_prod"
,
"//mace/core:opencl_prod"
,
"//mace/core:opencl_prod"
,
...
...
mace/core/half.h
已删除
100644 → 0
浏览文件 @
cedb6e8d
// half - IEEE 754-based half-precision floating point library.
//
// Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// Version 1.12.0
/// \file
/// Main header file for half precision functionality.
#ifndef HALF_HALF_HPP
#define HALF_HALF_HPP
/// Combined gcc version number.
#define HALF_GNUC_VERSION (__GNUC__*100+__GNUC_MINOR__)
//check C++11 language features
#if defined(__clang__) //clang
#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
/*#elif defined(__INTEL_COMPILER) //Intel C++
#if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT) ????????
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_CONSTEXPR) ????????
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if __INTEL_COMPILER >= 1300 && !defined(HALF_ENABLE_CPP11_NOEXCEPT) ????????
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if __INTEL_COMPILER >= 1100 && !defined(HALF_ENABLE_CPP11_LONG_LONG) ????????
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif*/
#elif defined(__GNUC__) //gcc
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if HALF_GNUC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#endif
#elif defined(_MSC_VER) //Visual C++
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#define HALF_POP_WARNINGS 1
#pragma warning(push)
#pragma warning(disable : 4099 4127 4146) //struct vs class, constant in if, negative unsigned
#endif
//check C++11 library features
#include <utility>
#if defined(_LIBCPP_VERSION) //libc++
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#ifndef HALF_ENABLE_CPP11_CSTDINT
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#ifndef HALF_ENABLE_CPP11_CMATH
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#ifndef HALF_ENABLE_CPP11_HASH
#define HALF_ENABLE_CPP11_HASH 1
#endif
#endif
#elif defined(__GLIBCXX__) //libstdc++
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
#ifdef __clang__
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
#define HALF_ENABLE_CPP11_HASH 1
#endif
#else
#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
#define HALF_ENABLE_CPP11_HASH 1
#endif
#endif
#endif
#elif defined(_CPPLIB_VER) //Dinkumware/Visual C++
#if _CPPLIB_VER >= 520
#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#ifndef HALF_ENABLE_CPP11_CSTDINT
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#ifndef HALF_ENABLE_CPP11_HASH
#define HALF_ENABLE_CPP11_HASH 1
#endif
#endif
#if _CPPLIB_VER >= 610
#ifndef HALF_ENABLE_CPP11_CMATH
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#endif
#endif
#undef HALF_GNUC_VERSION
//support constexpr
#if HALF_ENABLE_CPP11_CONSTEXPR
#define HALF_CONSTEXPR constexpr
#define HALF_CONSTEXPR_CONST constexpr
#else
#define HALF_CONSTEXPR
#define HALF_CONSTEXPR_CONST const
#endif
//support noexcept
#if HALF_ENABLE_CPP11_NOEXCEPT
#define HALF_NOEXCEPT noexcept
#define HALF_NOTHROW noexcept
#else
#define HALF_NOEXCEPT
#define HALF_NOTHROW throw()
#endif
#include <algorithm>
#include <iostream>
#include <limits>
#include <climits>
#include <cmath>
#include <cstring>
#if HALF_ENABLE_CPP11_TYPE_TRAITS
#include <type_traits>
#endif
#if HALF_ENABLE_CPP11_CSTDINT
#include <cstdint>
#endif
#if HALF_ENABLE_CPP11_HASH
#include <functional>
#endif
/// Default rounding mode.
/// This specifies the rounding mode used for all conversions between [half](\ref half_float::half)s and `float`s as well as
/// for the half_cast() if not specifying a rounding mode explicitly. It can be redefined (before including half.hpp) to one
/// of the standard rounding modes using their respective constants or the equivalent values of `std::float_round_style`:
///
/// `std::float_round_style` | value | rounding
/// ---------------------------------|-------|-------------------------
/// `std::round_indeterminate` | -1 | fastest (default)
/// `std::round_toward_zero` | 0 | toward zero
/// `std::round_to_nearest` | 1 | to nearest
/// `std::round_toward_infinity` | 2 | toward positive infinity
/// `std::round_toward_neg_infinity` | 3 | toward negative infinity
///
/// By default this is set to `-1` (`std::round_indeterminate`), which uses truncation (round toward zero, but with overflows
/// set to infinity) and is the fastest rounding mode possible. It can even be set to `std::numeric_limits<float>::round_style`
/// to synchronize the rounding mode with that of the underlying single-precision implementation.
#ifndef HALF_ROUND_STYLE
#define HALF_ROUND_STYLE -1 // = std::round_indeterminate
#endif
/// Tie-breaking behaviour for round to nearest.
/// This specifies if ties in round to nearest should be resolved by rounding to the nearest even value. By default this is
/// defined to `0` resulting in the faster but slightly more biased behaviour of rounding away from zero in half-way cases (and
/// thus equal to the round() function), but can be redefined to `1` (before including half.hpp) if more IEEE-conformant
/// behaviour is needed.
#ifndef HALF_ROUND_TIES_TO_EVEN
#define HALF_ROUND_TIES_TO_EVEN 0 // ties away from zero
#endif
/// Value signaling overflow.
/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to a positive value signaling the overflow of an
/// operation, in particular it just evaluates to positive infinity.
#define HUGE_VALH std::numeric_limits<half_float::half>::infinity()
/// Fast half-precision fma function.
/// This symbol is only defined if the fma() function generally executes as fast as, or faster than, a separate
/// half-precision multiplication followed by an addition. Due to the internal single-precision implementation of all
/// arithmetic operations, this is in fact always the case.
#define FP_FAST_FMAH 1
#ifndef FP_ILOGB0
#define FP_ILOGB0 INT_MIN
#endif
#ifndef FP_ILOGBNAN
#define FP_ILOGBNAN INT_MAX
#endif
#ifndef FP_SUBNORMAL
#define FP_SUBNORMAL 0
#endif
#ifndef FP_ZERO
#define FP_ZERO 1
#endif
#ifndef FP_NAN
#define FP_NAN 2
#endif
#ifndef FP_INFINITE
#define FP_INFINITE 3
#endif
#ifndef FP_NORMAL
#define FP_NORMAL 4
#endif
/// Main namespace for half precision functionality.
/// This namespace contains all the functionality provided by the library.
namespace
half_float
{
class
half
;
#if HALF_ENABLE_CPP11_USER_LITERALS
/// Library-defined half-precision literals.
/// Import this namespace to enable half-precision floating point literals:
/// ~~~~{.cpp}
/// using namespace half_float::literal;
/// half_float::half = 4.2_h;
/// ~~~~
namespace
literal
{
half
operator
""
_h
(
long
double
);
}
#endif
/// \internal
/// \brief Implementation details.
namespace
detail
{
#if HALF_ENABLE_CPP11_TYPE_TRAITS
/// Conditional type.
template
<
bool
B
,
typename
T
,
typename
F
>
struct
conditional
:
std
::
conditional
<
B
,
T
,
F
>
{};
/// Helper for tag dispatching.
template
<
bool
B
>
struct
bool_type
:
std
::
integral_constant
<
bool
,
B
>
{};
using
std
::
true_type
;
using
std
::
false_type
;
/// Type traits for floating point types.
template
<
typename
T
>
struct
is_float
:
std
::
is_floating_point
<
T
>
{};
#else
/// Conditional type.
template
<
bool
,
typename
T
,
typename
>
struct
conditional
{
typedef
T
type
;
};
template
<
typename
T
,
typename
F
>
struct
conditional
<
false
,
T
,
F
>
{
typedef
F
type
;
};
/// Helper for tag dispatching.
template
<
bool
>
struct
bool_type
{};
typedef
bool_type
<
true
>
true_type
;
typedef
bool_type
<
false
>
false_type
;
/// Type traits for floating point types.
template
<
typename
>
struct
is_float
:
false_type
{};
template
<
typename
T
>
struct
is_float
<
const
T
>
:
is_float
<
T
>
{};
template
<
typename
T
>
struct
is_float
<
volatile
T
>
:
is_float
<
T
>
{};
template
<
typename
T
>
struct
is_float
<
const
volatile
T
>
:
is_float
<
T
>
{};
template
<
>
struct
is_float
<
float
>
:
true_type
{};
template
<
>
struct
is_float
<
double
>
:
true_type
{};
template
<
>
struct
is_float
<
long
double
>
:
true_type
{};
#endif
/// Type traits for floating point bits.
template
<
typename
T
>
struct
bits
{
typedef
unsigned
char
type
;
};
template
<
typename
T
>
struct
bits
<
const
T
>
:
bits
<
T
>
{};
template
<
typename
T
>
struct
bits
<
volatile
T
>
:
bits
<
T
>
{};
template
<
typename
T
>
struct
bits
<
const
volatile
T
>
:
bits
<
T
>
{};
#if HALF_ENABLE_CPP11_CSTDINT
/// Unsigned integer of (at least) 16 bits width.
typedef
std
::
uint_least16_t
uint16
;
/// Unsigned integer of (at least) 32 bits width.
template
<
>
struct
bits
<
float
>
{
typedef
std
::
uint_least32_t
type
;
};
/// Unsigned integer of (at least) 64 bits width.
template
<
>
struct
bits
<
double
>
{
typedef
std
::
uint_least64_t
type
;
};
#else
/// Unsigned integer of (at least) 16 bits width.
typedef
unsigned
short
uint16
;
/// Unsigned integer of (at least) 32 bits width.
template
<
>
struct
bits
<
float
>
:
conditional
<
std
::
numeric_limits
<
unsigned
int
>::
digits
>=
32
,
unsigned
int
,
unsigned
long
>
{};
#if HALF_ENABLE_CPP11_LONG_LONG
/// Unsigned integer of (at least) 64 bits width.
template
<
>
struct
bits
<
double
>
:
conditional
<
std
::
numeric_limits
<
unsigned
long
>::
digits
>=
64
,
unsigned
long
,
unsigned
long
long
>
{};
#else
/// Unsigned integer of (at least) 64 bits width.
template
<
>
struct
bits
<
double
>
{
typedef
unsigned
long
type
;
};
#endif
#endif
/// Tag type for binary construction.
struct
binary_t
{};
/// Tag for binary construction.
HALF_CONSTEXPR_CONST
binary_t
binary
=
binary_t
();
/// Temporary half-precision expression.
/// This class represents a half-precision expression which just stores a single-precision value internally.
struct
expr
{
/// Conversion constructor.
/// \param f single-precision value to convert
explicit
HALF_CONSTEXPR
expr
(
float
f
)
HALF_NOEXCEPT
:
value_
(
f
)
{}
/// Conversion to single-precision.
/// \return single precision value representing expression value
HALF_CONSTEXPR
operator
float
()
const
HALF_NOEXCEPT
{
return
value_
;
}
private:
/// Internal expression value stored in single-precision.
float
value_
;
};
/// SFINAE helper for generic half-precision functions.
/// This class template has to be specialized for each valid combination of argument types to provide a corresponding
/// `type` member equivalent to \a T.
/// \tparam T type to return
template
<
typename
T
,
typename
,
typename
=
void
,
typename
=
void
>
struct
enable
{};
template
<
typename
T
>
struct
enable
<
T
,
half
,
void
,
void
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
expr
,
void
,
void
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
half
,
half
,
void
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
half
,
expr
,
void
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
expr
,
half
,
void
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
expr
,
expr
,
void
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
half
,
half
,
half
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
half
,
half
,
expr
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
half
,
expr
,
half
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
half
,
expr
,
expr
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
expr
,
half
,
half
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
expr
,
half
,
expr
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
expr
,
expr
,
half
>
{
typedef
T
type
;
};
template
<
typename
T
>
struct
enable
<
T
,
expr
,
expr
,
expr
>
{
typedef
T
type
;
};
/// Return type for specialized generic 2-argument half-precision functions.
/// This class template has to be specialized for each valid combination of argument types to provide a corresponding
/// `type` member denoting the appropriate return type.
/// \tparam T first argument type
/// \tparam U first argument type
template
<
typename
T
,
typename
U
>
struct
result
:
enable
<
expr
,
T
,
U
>
{};
template
<
>
struct
result
<
half
,
half
>
{
typedef
half
type
;
};
/// \name Classification helpers
/// \{
/// Check for infinity.
/// \tparam T argument type (builtin floating point type)
/// \param arg value to query
/// \retval true if infinity
/// \retval false else
template
<
typename
T
>
bool
builtin_isinf
(
T
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
std
::
isinf
(
arg
);
#elif defined(_MSC_VER)
return
!::
_finite
(
static_cast
<
double
>
(
arg
))
&&
!::
_isnan
(
static_cast
<
double
>
(
arg
));
#else
return
arg
==
std
::
numeric_limits
<
T
>::
infinity
()
||
arg
==
-
std
::
numeric_limits
<
T
>::
infinity
();
#endif
}
/// Check for NaN.
/// \tparam T argument type (builtin floating point type)
/// \param arg value to query
/// \retval true if not a number
/// \retval false else
template
<
typename
T
>
bool
builtin_isnan
(
T
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
std
::
isnan
(
arg
);
#elif defined(_MSC_VER)
return
::
_isnan
(
static_cast
<
double
>
(
arg
))
!=
0
;
#else
return
arg
!=
arg
;
#endif
}
/// Check sign.
/// \tparam T argument type (builtin floating point type)
/// \param arg value to query
/// \retval true if signbit set
/// \retval false else
template
<
typename
T
>
bool
builtin_signbit
(
T
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
std
::
signbit
(
arg
);
#else
return
arg
<
T
()
||
(
arg
==
T
()
&&
T
(
1
)
/
arg
<
T
());
#endif
}
/// \}
/// \name Conversion
/// \{
/// Convert IEEE single-precision to half-precision.
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \param value single-precision value
/// \return binary representation of half-precision value
template
<
std
::
float_round_style
R
>
uint16
float2half_impl
(
float
value
,
true_type
)
{
typedef
bits
<
float
>::
type
uint32
;
uint32
bits
;
// = *reinterpret_cast<uint32*>(&value); //violating strict aliasing!
std
::
memcpy
(
&
bits
,
&
value
,
sizeof
(
float
));
/* uint16 hbits = (bits>>16) & 0x8000;
bits &= 0x7FFFFFFF;
int exp = bits >> 23;
if(exp == 255)
return hbits | 0x7C00 | (0x3FF&-static_cast<unsigned>((bits&0x7FFFFF)!=0));
if(exp > 142)
{
if(R == std::round_toward_infinity)
return hbits | 0x7C00 - (hbits>>15);
if(R == std::round_toward_neg_infinity)
return hbits | 0x7BFF + (hbits>>15);
return hbits | 0x7BFF + (R!=std::round_toward_zero);
}
int g, s;
if(exp > 112)
{
g = (bits>>12) & 1;
s = (bits&0xFFF) != 0;
hbits |= ((exp-112)<<10) | ((bits>>13)&0x3FF);
}
else if(exp > 101)
{
int i = 125 - exp;
bits = (bits&0x7FFFFF) | 0x800000;
g = (bits>>i) & 1;
s = (bits&((1L<<i)-1)) != 0;
hbits |= bits >> (i+1);
}
else
{
g = 0;
s = bits != 0;
}
if(R == std::round_to_nearest)
#if HALF_ROUND_TIES_TO_EVEN
hbits += g & (s|hbits);
#else
hbits += g;
#endif
else if(R == std::round_toward_infinity)
hbits += ~(hbits>>15) & (s|g);
else if(R == std::round_toward_neg_infinity)
hbits += (hbits>>15) & (g|s);
*/
static
const
uint16
base_table
[
512
]
=
{
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0000
,
0x0001
,
0x0002
,
0x0004
,
0x0008
,
0x0010
,
0x0020
,
0x0040
,
0x0080
,
0x0100
,
0x0200
,
0x0400
,
0x0800
,
0x0C00
,
0x1000
,
0x1400
,
0x1800
,
0x1C00
,
0x2000
,
0x2400
,
0x2800
,
0x2C00
,
0x3000
,
0x3400
,
0x3800
,
0x3C00
,
0x4000
,
0x4400
,
0x4800
,
0x4C00
,
0x5000
,
0x5400
,
0x5800
,
0x5C00
,
0x6000
,
0x6400
,
0x6800
,
0x6C00
,
0x7000
,
0x7400
,
0x7800
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x7C00
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8000
,
0x8001
,
0x8002
,
0x8004
,
0x8008
,
0x8010
,
0x8020
,
0x8040
,
0x8080
,
0x8100
,
0x8200
,
0x8400
,
0x8800
,
0x8C00
,
0x9000
,
0x9400
,
0x9800
,
0x9C00
,
0xA000
,
0xA400
,
0xA800
,
0xAC00
,
0xB000
,
0xB400
,
0xB800
,
0xBC00
,
0xC000
,
0xC400
,
0xC800
,
0xCC00
,
0xD000
,
0xD400
,
0xD800
,
0xDC00
,
0xE000
,
0xE400
,
0xE800
,
0xEC00
,
0xF000
,
0xF400
,
0xF800
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
,
0xFC00
};
static
const
unsigned
char
shift_table
[
512
]
=
{
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
23
,
22
,
21
,
20
,
19
,
18
,
17
,
16
,
15
,
14
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
13
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
23
,
22
,
21
,
20
,
19
,
18
,
17
,
16
,
15
,
14
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
13
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
24
,
13
};
uint16
hbits
=
base_table
[
bits
>>
23
]
+
static_cast
<
uint16
>
((
bits
&
0x7FFFFF
)
>>
shift_table
[
bits
>>
23
]);
if
(
R
==
std
::
round_to_nearest
)
hbits
+=
(((
bits
&
0x7FFFFF
)
>>
(
shift_table
[
bits
>>
23
]
-
1
))
|
(((
bits
>>
23
)
&
0xFF
)
==
102
))
&
((
hbits
&
0x7C00
)
!=
0x7C00
)
#if HALF_ROUND_TIES_TO_EVEN
&
(((((
static_cast
<
uint32
>
(
1
)
<<
(
shift_table
[
bits
>>
23
]
-
1
))
-
1
)
&
bits
)
!=
0
)
|
hbits
)
#endif
;
else
if
(
R
==
std
::
round_toward_zero
)
hbits
-=
((
hbits
&
0x7FFF
)
==
0x7C00
)
&
~
shift_table
[
bits
>>
23
];
else
if
(
R
==
std
::
round_toward_infinity
)
hbits
+=
((((
bits
&
0x7FFFFF
&
((
static_cast
<
uint32
>
(
1
)
<<
(
shift_table
[
bits
>>
23
]))
-
1
))
!=
0
)
|
(((
bits
>>
23
)
<=
102
)
&
((
bits
>>
23
)
!=
0
)))
&
(
hbits
<
0x7C00
))
-
((
hbits
==
0xFC00
)
&
((
bits
>>
23
)
!=
511
));
else
if
(
R
==
std
::
round_toward_neg_infinity
)
hbits
+=
((((
bits
&
0x7FFFFF
&
((
static_cast
<
uint32
>
(
1
)
<<
(
shift_table
[
bits
>>
23
]))
-
1
))
!=
0
)
|
(((
bits
>>
23
)
<=
358
)
&
((
bits
>>
23
)
!=
256
)))
&
(
hbits
<
0xFC00
)
&
(
hbits
>>
15
))
-
((
hbits
==
0x7C00
)
&
((
bits
>>
23
)
!=
255
));
return
hbits
;
}
/// Convert IEEE double-precision to half-precision.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \param value double-precision value
/// \return binary representation of half-precision value
template
<
std
::
float_round_style
R
>
uint16
float2half_impl
(
double
value
,
true_type
)
{
typedef
bits
<
float
>::
type
uint32
;
typedef
bits
<
double
>::
type
uint64
;
uint64
bits
;
// = *reinterpret_cast<uint64*>(&value); //violating strict aliasing!
std
::
memcpy
(
&
bits
,
&
value
,
sizeof
(
double
));
uint32
hi
=
bits
>>
32
,
lo
=
bits
&
0xFFFFFFFF
;
uint16
hbits
=
(
hi
>>
16
)
&
0x8000
;
hi
&=
0x7FFFFFFF
;
int
exp
=
hi
>>
20
;
if
(
exp
==
2047
)
return
hbits
|
0x7C00
|
(
0x3FF
&-
static_cast
<
unsigned
>
((
bits
&
0xFFFFFFFFFFFFF
)
!=
0
));
if
(
exp
>
1038
)
{
if
(
R
==
std
::
round_toward_infinity
)
return
hbits
|
0x7C00
-
(
hbits
>>
15
);
if
(
R
==
std
::
round_toward_neg_infinity
)
return
hbits
|
0x7BFF
+
(
hbits
>>
15
);
return
hbits
|
0x7BFF
+
(
R
!=
std
::
round_toward_zero
);
}
int
g
,
s
=
lo
!=
0
;
if
(
exp
>
1008
)
{
g
=
(
hi
>>
9
)
&
1
;
s
|=
(
hi
&
0x1FF
)
!=
0
;
hbits
|=
((
exp
-
1008
)
<<
10
)
|
((
hi
>>
10
)
&
0x3FF
);
}
else
if
(
exp
>
997
)
{
int
i
=
1018
-
exp
;
hi
=
(
hi
&
0xFFFFF
)
|
0x100000
;
g
=
(
hi
>>
i
)
&
1
;
s
|=
(
hi
&
((
1L
<<
i
)
-
1
))
!=
0
;
hbits
|=
hi
>>
(
i
+
1
);
}
else
{
g
=
0
;
s
|=
hi
!=
0
;
}
if
(
R
==
std
::
round_to_nearest
)
#if HALF_ROUND_TIES_TO_EVEN
hbits
+=
g
&
(
s
|
hbits
);
#else
hbits
+=
g
;
#endif
else
if
(
R
==
std
::
round_toward_infinity
)
hbits
+=
~
(
hbits
>>
15
)
&
(
s
|
g
);
else
if
(
R
==
std
::
round_toward_neg_infinity
)
hbits
+=
(
hbits
>>
15
)
&
(
g
|
s
);
return
hbits
;
}
/// Convert non-IEEE floating point to half-precision.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \tparam T source type (builtin floating point type)
/// \param value floating point value
/// \return binary representation of half-precision value
template
<
std
::
float_round_style
R
,
typename
T
>
uint16
float2half_impl
(
T
value
,
...)
{
uint16
hbits
=
static_cast
<
unsigned
>
(
builtin_signbit
(
value
))
<<
15
;
if
(
value
==
T
())
return
hbits
;
if
(
builtin_isnan
(
value
))
return
hbits
|
0x7FFF
;
if
(
builtin_isinf
(
value
))
return
hbits
|
0x7C00
;
int
exp
;
std
::
frexp
(
value
,
&
exp
);
if
(
exp
>
16
)
{
if
(
R
==
std
::
round_toward_infinity
)
return
(
hbits
)
|
(
0x7C00
-
(
hbits
>>
15
));
else
if
(
R
==
std
::
round_toward_neg_infinity
)
return
(
hbits
)
|
(
0x7BFF
+
(
hbits
>>
15
));
return
(
hbits
)
|
(
0x7BFF
+
(
R
!=
std
::
round_toward_zero
));
}
if
(
exp
<
-
13
)
value
=
std
::
ldexp
(
value
,
24
);
else
{
value
=
std
::
ldexp
(
value
,
11
-
exp
);
hbits
|=
((
exp
+
13
)
<<
10
);
}
T
ival
,
frac
=
std
::
modf
(
value
,
&
ival
);
hbits
+=
static_cast
<
uint16
>
(
std
::
abs
(
static_cast
<
int
>
(
ival
)));
if
(
R
==
std
::
round_to_nearest
)
{
frac
=
std
::
abs
(
frac
);
#if HALF_ROUND_TIES_TO_EVEN
hbits
+=
(
frac
>
T
(
0.5
))
|
((
frac
==
T
(
0.5
))
&
hbits
);
#else
hbits
+=
frac
>=
T
(
0.5
);
#endif
}
else
if
(
R
==
std
::
round_toward_infinity
)
hbits
+=
frac
>
T
();
else
if
(
R
==
std
::
round_toward_neg_infinity
)
hbits
+=
frac
<
T
();
return
hbits
;
}
/// Convert floating point to half-precision.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \tparam T source type (builtin floating point type)
/// \param value floating point value
/// \return binary representation of half-precision value
template
<
std
::
float_round_style
R
,
typename
T
>
uint16
float2half
(
T
value
)
{
return
float2half_impl
<
R
>
(
value
,
bool_type
<
std
::
numeric_limits
<
T
>::
is_iec559
&&
sizeof
(
typename
bits
<
T
>::
type
)
==
sizeof
(
T
)
>
());
}
/// Convert integer to half-precision floating point.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \tparam S `true` if value negative, `false` else
/// \tparam T type to convert (builtin integer type)
/// \param value non-negative integral value
/// \return binary representation of half-precision value
template
<
std
::
float_round_style
R
,
bool
S
,
typename
T
>
uint16
int2half_impl
(
T
value
)
{
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
static_assert
(
std
::
is_integral
<
T
>::
value
,
"int to half conversion only supports builtin integer types"
);
#endif
if
(
S
)
value
=
-
value
;
uint16
bits
=
S
<<
15
;
if
(
value
>
0xFFFF
)
{
if
(
R
==
std
::
round_toward_infinity
)
bits
|=
0x7C00
-
S
;
else
if
(
R
==
std
::
round_toward_neg_infinity
)
bits
|=
0x7BFF
+
S
;
else
bits
|=
0x7BFF
+
(
R
!=
std
::
round_toward_zero
);
}
else
if
(
value
)
{
unsigned
int
m
=
value
,
exp
=
24
;
for
(;
m
<
0x400
;
m
<<=
1
,
--
exp
)
;
for
(;
m
>
0x7FF
;
m
>>=
1
,
++
exp
)
;
bits
|=
(
exp
<<
10
)
+
m
;
if
(
exp
>
24
)
{
if
(
R
==
std
::
round_to_nearest
)
bits
+=
(
value
>>
(
exp
-
25
))
&
1
#if HALF_ROUND_TIES_TO_EVEN
&
(((((
1
<<
(
exp
-
25
))
-
1
)
&
value
)
!=
0
)
|
bits
)
#endif
;
else
if
(
R
==
std
::
round_toward_infinity
)
bits
+=
((
value
&
((
1
<<
(
exp
-
24
))
-
1
))
!=
0
)
&
!
S
;
else
if
(
R
==
std
::
round_toward_neg_infinity
)
bits
+=
((
value
&
((
1
<<
(
exp
-
24
))
-
1
))
!=
0
)
&
S
;
}
}
return
bits
;
}
/// Convert integer to half-precision floating point.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \tparam T type to convert (builtin integer type)
/// \param value integral value
/// \return binary representation of half-precision value
template
<
std
::
float_round_style
R
,
typename
T
>
uint16
int2half
(
T
value
)
{
return
(
value
<
0
)
?
int2half_impl
<
R
,
true
>
(
value
)
:
int2half_impl
<
R
,
false
>
(
value
);
}
/// Convert half-precision to IEEE single-precision.
/// Credit for this goes to [Jeroen van der Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
/// \param value binary representation of half-precision value
/// \return single-precision value
inline
float
half2float_impl
(
uint16
value
,
float
,
true_type
)
{
typedef
bits
<
float
>::
type
uint32
;
/* uint32 bits = static_cast<uint32>(value&0x8000) << 16;
int abs = value & 0x7FFF;
if(abs)
{
bits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);
for(; abs<0x400; abs<<=1,bits-=0x800000) ;
bits += static_cast<uint32>(abs) << 13;
}
*/
static
const
uint32
mantissa_table
[
2048
]
=
{
0x00000000
,
0x33800000
,
0x34000000
,
0x34400000
,
0x34800000
,
0x34A00000
,
0x34C00000
,
0x34E00000
,
0x35000000
,
0x35100000
,
0x35200000
,
0x35300000
,
0x35400000
,
0x35500000
,
0x35600000
,
0x35700000
,
0x35800000
,
0x35880000
,
0x35900000
,
0x35980000
,
0x35A00000
,
0x35A80000
,
0x35B00000
,
0x35B80000
,
0x35C00000
,
0x35C80000
,
0x35D00000
,
0x35D80000
,
0x35E00000
,
0x35E80000
,
0x35F00000
,
0x35F80000
,
0x36000000
,
0x36040000
,
0x36080000
,
0x360C0000
,
0x36100000
,
0x36140000
,
0x36180000
,
0x361C0000
,
0x36200000
,
0x36240000
,
0x36280000
,
0x362C0000
,
0x36300000
,
0x36340000
,
0x36380000
,
0x363C0000
,
0x36400000
,
0x36440000
,
0x36480000
,
0x364C0000
,
0x36500000
,
0x36540000
,
0x36580000
,
0x365C0000
,
0x36600000
,
0x36640000
,
0x36680000
,
0x366C0000
,
0x36700000
,
0x36740000
,
0x36780000
,
0x367C0000
,
0x36800000
,
0x36820000
,
0x36840000
,
0x36860000
,
0x36880000
,
0x368A0000
,
0x368C0000
,
0x368E0000
,
0x36900000
,
0x36920000
,
0x36940000
,
0x36960000
,
0x36980000
,
0x369A0000
,
0x369C0000
,
0x369E0000
,
0x36A00000
,
0x36A20000
,
0x36A40000
,
0x36A60000
,
0x36A80000
,
0x36AA0000
,
0x36AC0000
,
0x36AE0000
,
0x36B00000
,
0x36B20000
,
0x36B40000
,
0x36B60000
,
0x36B80000
,
0x36BA0000
,
0x36BC0000
,
0x36BE0000
,
0x36C00000
,
0x36C20000
,
0x36C40000
,
0x36C60000
,
0x36C80000
,
0x36CA0000
,
0x36CC0000
,
0x36CE0000
,
0x36D00000
,
0x36D20000
,
0x36D40000
,
0x36D60000
,
0x36D80000
,
0x36DA0000
,
0x36DC0000
,
0x36DE0000
,
0x36E00000
,
0x36E20000
,
0x36E40000
,
0x36E60000
,
0x36E80000
,
0x36EA0000
,
0x36EC0000
,
0x36EE0000
,
0x36F00000
,
0x36F20000
,
0x36F40000
,
0x36F60000
,
0x36F80000
,
0x36FA0000
,
0x36FC0000
,
0x36FE0000
,
0x37000000
,
0x37010000
,
0x37020000
,
0x37030000
,
0x37040000
,
0x37050000
,
0x37060000
,
0x37070000
,
0x37080000
,
0x37090000
,
0x370A0000
,
0x370B0000
,
0x370C0000
,
0x370D0000
,
0x370E0000
,
0x370F0000
,
0x37100000
,
0x37110000
,
0x37120000
,
0x37130000
,
0x37140000
,
0x37150000
,
0x37160000
,
0x37170000
,
0x37180000
,
0x37190000
,
0x371A0000
,
0x371B0000
,
0x371C0000
,
0x371D0000
,
0x371E0000
,
0x371F0000
,
0x37200000
,
0x37210000
,
0x37220000
,
0x37230000
,
0x37240000
,
0x37250000
,
0x37260000
,
0x37270000
,
0x37280000
,
0x37290000
,
0x372A0000
,
0x372B0000
,
0x372C0000
,
0x372D0000
,
0x372E0000
,
0x372F0000
,
0x37300000
,
0x37310000
,
0x37320000
,
0x37330000
,
0x37340000
,
0x37350000
,
0x37360000
,
0x37370000
,
0x37380000
,
0x37390000
,
0x373A0000
,
0x373B0000
,
0x373C0000
,
0x373D0000
,
0x373E0000
,
0x373F0000
,
0x37400000
,
0x37410000
,
0x37420000
,
0x37430000
,
0x37440000
,
0x37450000
,
0x37460000
,
0x37470000
,
0x37480000
,
0x37490000
,
0x374A0000
,
0x374B0000
,
0x374C0000
,
0x374D0000
,
0x374E0000
,
0x374F0000
,
0x37500000
,
0x37510000
,
0x37520000
,
0x37530000
,
0x37540000
,
0x37550000
,
0x37560000
,
0x37570000
,
0x37580000
,
0x37590000
,
0x375A0000
,
0x375B0000
,
0x375C0000
,
0x375D0000
,
0x375E0000
,
0x375F0000
,
0x37600000
,
0x37610000
,
0x37620000
,
0x37630000
,
0x37640000
,
0x37650000
,
0x37660000
,
0x37670000
,
0x37680000
,
0x37690000
,
0x376A0000
,
0x376B0000
,
0x376C0000
,
0x376D0000
,
0x376E0000
,
0x376F0000
,
0x37700000
,
0x37710000
,
0x37720000
,
0x37730000
,
0x37740000
,
0x37750000
,
0x37760000
,
0x37770000
,
0x37780000
,
0x37790000
,
0x377A0000
,
0x377B0000
,
0x377C0000
,
0x377D0000
,
0x377E0000
,
0x377F0000
,
0x37800000
,
0x37808000
,
0x37810000
,
0x37818000
,
0x37820000
,
0x37828000
,
0x37830000
,
0x37838000
,
0x37840000
,
0x37848000
,
0x37850000
,
0x37858000
,
0x37860000
,
0x37868000
,
0x37870000
,
0x37878000
,
0x37880000
,
0x37888000
,
0x37890000
,
0x37898000
,
0x378A0000
,
0x378A8000
,
0x378B0000
,
0x378B8000
,
0x378C0000
,
0x378C8000
,
0x378D0000
,
0x378D8000
,
0x378E0000
,
0x378E8000
,
0x378F0000
,
0x378F8000
,
0x37900000
,
0x37908000
,
0x37910000
,
0x37918000
,
0x37920000
,
0x37928000
,
0x37930000
,
0x37938000
,
0x37940000
,
0x37948000
,
0x37950000
,
0x37958000
,
0x37960000
,
0x37968000
,
0x37970000
,
0x37978000
,
0x37980000
,
0x37988000
,
0x37990000
,
0x37998000
,
0x379A0000
,
0x379A8000
,
0x379B0000
,
0x379B8000
,
0x379C0000
,
0x379C8000
,
0x379D0000
,
0x379D8000
,
0x379E0000
,
0x379E8000
,
0x379F0000
,
0x379F8000
,
0x37A00000
,
0x37A08000
,
0x37A10000
,
0x37A18000
,
0x37A20000
,
0x37A28000
,
0x37A30000
,
0x37A38000
,
0x37A40000
,
0x37A48000
,
0x37A50000
,
0x37A58000
,
0x37A60000
,
0x37A68000
,
0x37A70000
,
0x37A78000
,
0x37A80000
,
0x37A88000
,
0x37A90000
,
0x37A98000
,
0x37AA0000
,
0x37AA8000
,
0x37AB0000
,
0x37AB8000
,
0x37AC0000
,
0x37AC8000
,
0x37AD0000
,
0x37AD8000
,
0x37AE0000
,
0x37AE8000
,
0x37AF0000
,
0x37AF8000
,
0x37B00000
,
0x37B08000
,
0x37B10000
,
0x37B18000
,
0x37B20000
,
0x37B28000
,
0x37B30000
,
0x37B38000
,
0x37B40000
,
0x37B48000
,
0x37B50000
,
0x37B58000
,
0x37B60000
,
0x37B68000
,
0x37B70000
,
0x37B78000
,
0x37B80000
,
0x37B88000
,
0x37B90000
,
0x37B98000
,
0x37BA0000
,
0x37BA8000
,
0x37BB0000
,
0x37BB8000
,
0x37BC0000
,
0x37BC8000
,
0x37BD0000
,
0x37BD8000
,
0x37BE0000
,
0x37BE8000
,
0x37BF0000
,
0x37BF8000
,
0x37C00000
,
0x37C08000
,
0x37C10000
,
0x37C18000
,
0x37C20000
,
0x37C28000
,
0x37C30000
,
0x37C38000
,
0x37C40000
,
0x37C48000
,
0x37C50000
,
0x37C58000
,
0x37C60000
,
0x37C68000
,
0x37C70000
,
0x37C78000
,
0x37C80000
,
0x37C88000
,
0x37C90000
,
0x37C98000
,
0x37CA0000
,
0x37CA8000
,
0x37CB0000
,
0x37CB8000
,
0x37CC0000
,
0x37CC8000
,
0x37CD0000
,
0x37CD8000
,
0x37CE0000
,
0x37CE8000
,
0x37CF0000
,
0x37CF8000
,
0x37D00000
,
0x37D08000
,
0x37D10000
,
0x37D18000
,
0x37D20000
,
0x37D28000
,
0x37D30000
,
0x37D38000
,
0x37D40000
,
0x37D48000
,
0x37D50000
,
0x37D58000
,
0x37D60000
,
0x37D68000
,
0x37D70000
,
0x37D78000
,
0x37D80000
,
0x37D88000
,
0x37D90000
,
0x37D98000
,
0x37DA0000
,
0x37DA8000
,
0x37DB0000
,
0x37DB8000
,
0x37DC0000
,
0x37DC8000
,
0x37DD0000
,
0x37DD8000
,
0x37DE0000
,
0x37DE8000
,
0x37DF0000
,
0x37DF8000
,
0x37E00000
,
0x37E08000
,
0x37E10000
,
0x37E18000
,
0x37E20000
,
0x37E28000
,
0x37E30000
,
0x37E38000
,
0x37E40000
,
0x37E48000
,
0x37E50000
,
0x37E58000
,
0x37E60000
,
0x37E68000
,
0x37E70000
,
0x37E78000
,
0x37E80000
,
0x37E88000
,
0x37E90000
,
0x37E98000
,
0x37EA0000
,
0x37EA8000
,
0x37EB0000
,
0x37EB8000
,
0x37EC0000
,
0x37EC8000
,
0x37ED0000
,
0x37ED8000
,
0x37EE0000
,
0x37EE8000
,
0x37EF0000
,
0x37EF8000
,
0x37F00000
,
0x37F08000
,
0x37F10000
,
0x37F18000
,
0x37F20000
,
0x37F28000
,
0x37F30000
,
0x37F38000
,
0x37F40000
,
0x37F48000
,
0x37F50000
,
0x37F58000
,
0x37F60000
,
0x37F68000
,
0x37F70000
,
0x37F78000
,
0x37F80000
,
0x37F88000
,
0x37F90000
,
0x37F98000
,
0x37FA0000
,
0x37FA8000
,
0x37FB0000
,
0x37FB8000
,
0x37FC0000
,
0x37FC8000
,
0x37FD0000
,
0x37FD8000
,
0x37FE0000
,
0x37FE8000
,
0x37FF0000
,
0x37FF8000
,
0x38000000
,
0x38004000
,
0x38008000
,
0x3800C000
,
0x38010000
,
0x38014000
,
0x38018000
,
0x3801C000
,
0x38020000
,
0x38024000
,
0x38028000
,
0x3802C000
,
0x38030000
,
0x38034000
,
0x38038000
,
0x3803C000
,
0x38040000
,
0x38044000
,
0x38048000
,
0x3804C000
,
0x38050000
,
0x38054000
,
0x38058000
,
0x3805C000
,
0x38060000
,
0x38064000
,
0x38068000
,
0x3806C000
,
0x38070000
,
0x38074000
,
0x38078000
,
0x3807C000
,
0x38080000
,
0x38084000
,
0x38088000
,
0x3808C000
,
0x38090000
,
0x38094000
,
0x38098000
,
0x3809C000
,
0x380A0000
,
0x380A4000
,
0x380A8000
,
0x380AC000
,
0x380B0000
,
0x380B4000
,
0x380B8000
,
0x380BC000
,
0x380C0000
,
0x380C4000
,
0x380C8000
,
0x380CC000
,
0x380D0000
,
0x380D4000
,
0x380D8000
,
0x380DC000
,
0x380E0000
,
0x380E4000
,
0x380E8000
,
0x380EC000
,
0x380F0000
,
0x380F4000
,
0x380F8000
,
0x380FC000
,
0x38100000
,
0x38104000
,
0x38108000
,
0x3810C000
,
0x38110000
,
0x38114000
,
0x38118000
,
0x3811C000
,
0x38120000
,
0x38124000
,
0x38128000
,
0x3812C000
,
0x38130000
,
0x38134000
,
0x38138000
,
0x3813C000
,
0x38140000
,
0x38144000
,
0x38148000
,
0x3814C000
,
0x38150000
,
0x38154000
,
0x38158000
,
0x3815C000
,
0x38160000
,
0x38164000
,
0x38168000
,
0x3816C000
,
0x38170000
,
0x38174000
,
0x38178000
,
0x3817C000
,
0x38180000
,
0x38184000
,
0x38188000
,
0x3818C000
,
0x38190000
,
0x38194000
,
0x38198000
,
0x3819C000
,
0x381A0000
,
0x381A4000
,
0x381A8000
,
0x381AC000
,
0x381B0000
,
0x381B4000
,
0x381B8000
,
0x381BC000
,
0x381C0000
,
0x381C4000
,
0x381C8000
,
0x381CC000
,
0x381D0000
,
0x381D4000
,
0x381D8000
,
0x381DC000
,
0x381E0000
,
0x381E4000
,
0x381E8000
,
0x381EC000
,
0x381F0000
,
0x381F4000
,
0x381F8000
,
0x381FC000
,
0x38200000
,
0x38204000
,
0x38208000
,
0x3820C000
,
0x38210000
,
0x38214000
,
0x38218000
,
0x3821C000
,
0x38220000
,
0x38224000
,
0x38228000
,
0x3822C000
,
0x38230000
,
0x38234000
,
0x38238000
,
0x3823C000
,
0x38240000
,
0x38244000
,
0x38248000
,
0x3824C000
,
0x38250000
,
0x38254000
,
0x38258000
,
0x3825C000
,
0x38260000
,
0x38264000
,
0x38268000
,
0x3826C000
,
0x38270000
,
0x38274000
,
0x38278000
,
0x3827C000
,
0x38280000
,
0x38284000
,
0x38288000
,
0x3828C000
,
0x38290000
,
0x38294000
,
0x38298000
,
0x3829C000
,
0x382A0000
,
0x382A4000
,
0x382A8000
,
0x382AC000
,
0x382B0000
,
0x382B4000
,
0x382B8000
,
0x382BC000
,
0x382C0000
,
0x382C4000
,
0x382C8000
,
0x382CC000
,
0x382D0000
,
0x382D4000
,
0x382D8000
,
0x382DC000
,
0x382E0000
,
0x382E4000
,
0x382E8000
,
0x382EC000
,
0x382F0000
,
0x382F4000
,
0x382F8000
,
0x382FC000
,
0x38300000
,
0x38304000
,
0x38308000
,
0x3830C000
,
0x38310000
,
0x38314000
,
0x38318000
,
0x3831C000
,
0x38320000
,
0x38324000
,
0x38328000
,
0x3832C000
,
0x38330000
,
0x38334000
,
0x38338000
,
0x3833C000
,
0x38340000
,
0x38344000
,
0x38348000
,
0x3834C000
,
0x38350000
,
0x38354000
,
0x38358000
,
0x3835C000
,
0x38360000
,
0x38364000
,
0x38368000
,
0x3836C000
,
0x38370000
,
0x38374000
,
0x38378000
,
0x3837C000
,
0x38380000
,
0x38384000
,
0x38388000
,
0x3838C000
,
0x38390000
,
0x38394000
,
0x38398000
,
0x3839C000
,
0x383A0000
,
0x383A4000
,
0x383A8000
,
0x383AC000
,
0x383B0000
,
0x383B4000
,
0x383B8000
,
0x383BC000
,
0x383C0000
,
0x383C4000
,
0x383C8000
,
0x383CC000
,
0x383D0000
,
0x383D4000
,
0x383D8000
,
0x383DC000
,
0x383E0000
,
0x383E4000
,
0x383E8000
,
0x383EC000
,
0x383F0000
,
0x383F4000
,
0x383F8000
,
0x383FC000
,
0x38400000
,
0x38404000
,
0x38408000
,
0x3840C000
,
0x38410000
,
0x38414000
,
0x38418000
,
0x3841C000
,
0x38420000
,
0x38424000
,
0x38428000
,
0x3842C000
,
0x38430000
,
0x38434000
,
0x38438000
,
0x3843C000
,
0x38440000
,
0x38444000
,
0x38448000
,
0x3844C000
,
0x38450000
,
0x38454000
,
0x38458000
,
0x3845C000
,
0x38460000
,
0x38464000
,
0x38468000
,
0x3846C000
,
0x38470000
,
0x38474000
,
0x38478000
,
0x3847C000
,
0x38480000
,
0x38484000
,
0x38488000
,
0x3848C000
,
0x38490000
,
0x38494000
,
0x38498000
,
0x3849C000
,
0x384A0000
,
0x384A4000
,
0x384A8000
,
0x384AC000
,
0x384B0000
,
0x384B4000
,
0x384B8000
,
0x384BC000
,
0x384C0000
,
0x384C4000
,
0x384C8000
,
0x384CC000
,
0x384D0000
,
0x384D4000
,
0x384D8000
,
0x384DC000
,
0x384E0000
,
0x384E4000
,
0x384E8000
,
0x384EC000
,
0x384F0000
,
0x384F4000
,
0x384F8000
,
0x384FC000
,
0x38500000
,
0x38504000
,
0x38508000
,
0x3850C000
,
0x38510000
,
0x38514000
,
0x38518000
,
0x3851C000
,
0x38520000
,
0x38524000
,
0x38528000
,
0x3852C000
,
0x38530000
,
0x38534000
,
0x38538000
,
0x3853C000
,
0x38540000
,
0x38544000
,
0x38548000
,
0x3854C000
,
0x38550000
,
0x38554000
,
0x38558000
,
0x3855C000
,
0x38560000
,
0x38564000
,
0x38568000
,
0x3856C000
,
0x38570000
,
0x38574000
,
0x38578000
,
0x3857C000
,
0x38580000
,
0x38584000
,
0x38588000
,
0x3858C000
,
0x38590000
,
0x38594000
,
0x38598000
,
0x3859C000
,
0x385A0000
,
0x385A4000
,
0x385A8000
,
0x385AC000
,
0x385B0000
,
0x385B4000
,
0x385B8000
,
0x385BC000
,
0x385C0000
,
0x385C4000
,
0x385C8000
,
0x385CC000
,
0x385D0000
,
0x385D4000
,
0x385D8000
,
0x385DC000
,
0x385E0000
,
0x385E4000
,
0x385E8000
,
0x385EC000
,
0x385F0000
,
0x385F4000
,
0x385F8000
,
0x385FC000
,
0x38600000
,
0x38604000
,
0x38608000
,
0x3860C000
,
0x38610000
,
0x38614000
,
0x38618000
,
0x3861C000
,
0x38620000
,
0x38624000
,
0x38628000
,
0x3862C000
,
0x38630000
,
0x38634000
,
0x38638000
,
0x3863C000
,
0x38640000
,
0x38644000
,
0x38648000
,
0x3864C000
,
0x38650000
,
0x38654000
,
0x38658000
,
0x3865C000
,
0x38660000
,
0x38664000
,
0x38668000
,
0x3866C000
,
0x38670000
,
0x38674000
,
0x38678000
,
0x3867C000
,
0x38680000
,
0x38684000
,
0x38688000
,
0x3868C000
,
0x38690000
,
0x38694000
,
0x38698000
,
0x3869C000
,
0x386A0000
,
0x386A4000
,
0x386A8000
,
0x386AC000
,
0x386B0000
,
0x386B4000
,
0x386B8000
,
0x386BC000
,
0x386C0000
,
0x386C4000
,
0x386C8000
,
0x386CC000
,
0x386D0000
,
0x386D4000
,
0x386D8000
,
0x386DC000
,
0x386E0000
,
0x386E4000
,
0x386E8000
,
0x386EC000
,
0x386F0000
,
0x386F4000
,
0x386F8000
,
0x386FC000
,
0x38700000
,
0x38704000
,
0x38708000
,
0x3870C000
,
0x38710000
,
0x38714000
,
0x38718000
,
0x3871C000
,
0x38720000
,
0x38724000
,
0x38728000
,
0x3872C000
,
0x38730000
,
0x38734000
,
0x38738000
,
0x3873C000
,
0x38740000
,
0x38744000
,
0x38748000
,
0x3874C000
,
0x38750000
,
0x38754000
,
0x38758000
,
0x3875C000
,
0x38760000
,
0x38764000
,
0x38768000
,
0x3876C000
,
0x38770000
,
0x38774000
,
0x38778000
,
0x3877C000
,
0x38780000
,
0x38784000
,
0x38788000
,
0x3878C000
,
0x38790000
,
0x38794000
,
0x38798000
,
0x3879C000
,
0x387A0000
,
0x387A4000
,
0x387A8000
,
0x387AC000
,
0x387B0000
,
0x387B4000
,
0x387B8000
,
0x387BC000
,
0x387C0000
,
0x387C4000
,
0x387C8000
,
0x387CC000
,
0x387D0000
,
0x387D4000
,
0x387D8000
,
0x387DC000
,
0x387E0000
,
0x387E4000
,
0x387E8000
,
0x387EC000
,
0x387F0000
,
0x387F4000
,
0x387F8000
,
0x387FC000
,
0x38000000
,
0x38002000
,
0x38004000
,
0x38006000
,
0x38008000
,
0x3800A000
,
0x3800C000
,
0x3800E000
,
0x38010000
,
0x38012000
,
0x38014000
,
0x38016000
,
0x38018000
,
0x3801A000
,
0x3801C000
,
0x3801E000
,
0x38020000
,
0x38022000
,
0x38024000
,
0x38026000
,
0x38028000
,
0x3802A000
,
0x3802C000
,
0x3802E000
,
0x38030000
,
0x38032000
,
0x38034000
,
0x38036000
,
0x38038000
,
0x3803A000
,
0x3803C000
,
0x3803E000
,
0x38040000
,
0x38042000
,
0x38044000
,
0x38046000
,
0x38048000
,
0x3804A000
,
0x3804C000
,
0x3804E000
,
0x38050000
,
0x38052000
,
0x38054000
,
0x38056000
,
0x38058000
,
0x3805A000
,
0x3805C000
,
0x3805E000
,
0x38060000
,
0x38062000
,
0x38064000
,
0x38066000
,
0x38068000
,
0x3806A000
,
0x3806C000
,
0x3806E000
,
0x38070000
,
0x38072000
,
0x38074000
,
0x38076000
,
0x38078000
,
0x3807A000
,
0x3807C000
,
0x3807E000
,
0x38080000
,
0x38082000
,
0x38084000
,
0x38086000
,
0x38088000
,
0x3808A000
,
0x3808C000
,
0x3808E000
,
0x38090000
,
0x38092000
,
0x38094000
,
0x38096000
,
0x38098000
,
0x3809A000
,
0x3809C000
,
0x3809E000
,
0x380A0000
,
0x380A2000
,
0x380A4000
,
0x380A6000
,
0x380A8000
,
0x380AA000
,
0x380AC000
,
0x380AE000
,
0x380B0000
,
0x380B2000
,
0x380B4000
,
0x380B6000
,
0x380B8000
,
0x380BA000
,
0x380BC000
,
0x380BE000
,
0x380C0000
,
0x380C2000
,
0x380C4000
,
0x380C6000
,
0x380C8000
,
0x380CA000
,
0x380CC000
,
0x380CE000
,
0x380D0000
,
0x380D2000
,
0x380D4000
,
0x380D6000
,
0x380D8000
,
0x380DA000
,
0x380DC000
,
0x380DE000
,
0x380E0000
,
0x380E2000
,
0x380E4000
,
0x380E6000
,
0x380E8000
,
0x380EA000
,
0x380EC000
,
0x380EE000
,
0x380F0000
,
0x380F2000
,
0x380F4000
,
0x380F6000
,
0x380F8000
,
0x380FA000
,
0x380FC000
,
0x380FE000
,
0x38100000
,
0x38102000
,
0x38104000
,
0x38106000
,
0x38108000
,
0x3810A000
,
0x3810C000
,
0x3810E000
,
0x38110000
,
0x38112000
,
0x38114000
,
0x38116000
,
0x38118000
,
0x3811A000
,
0x3811C000
,
0x3811E000
,
0x38120000
,
0x38122000
,
0x38124000
,
0x38126000
,
0x38128000
,
0x3812A000
,
0x3812C000
,
0x3812E000
,
0x38130000
,
0x38132000
,
0x38134000
,
0x38136000
,
0x38138000
,
0x3813A000
,
0x3813C000
,
0x3813E000
,
0x38140000
,
0x38142000
,
0x38144000
,
0x38146000
,
0x38148000
,
0x3814A000
,
0x3814C000
,
0x3814E000
,
0x38150000
,
0x38152000
,
0x38154000
,
0x38156000
,
0x38158000
,
0x3815A000
,
0x3815C000
,
0x3815E000
,
0x38160000
,
0x38162000
,
0x38164000
,
0x38166000
,
0x38168000
,
0x3816A000
,
0x3816C000
,
0x3816E000
,
0x38170000
,
0x38172000
,
0x38174000
,
0x38176000
,
0x38178000
,
0x3817A000
,
0x3817C000
,
0x3817E000
,
0x38180000
,
0x38182000
,
0x38184000
,
0x38186000
,
0x38188000
,
0x3818A000
,
0x3818C000
,
0x3818E000
,
0x38190000
,
0x38192000
,
0x38194000
,
0x38196000
,
0x38198000
,
0x3819A000
,
0x3819C000
,
0x3819E000
,
0x381A0000
,
0x381A2000
,
0x381A4000
,
0x381A6000
,
0x381A8000
,
0x381AA000
,
0x381AC000
,
0x381AE000
,
0x381B0000
,
0x381B2000
,
0x381B4000
,
0x381B6000
,
0x381B8000
,
0x381BA000
,
0x381BC000
,
0x381BE000
,
0x381C0000
,
0x381C2000
,
0x381C4000
,
0x381C6000
,
0x381C8000
,
0x381CA000
,
0x381CC000
,
0x381CE000
,
0x381D0000
,
0x381D2000
,
0x381D4000
,
0x381D6000
,
0x381D8000
,
0x381DA000
,
0x381DC000
,
0x381DE000
,
0x381E0000
,
0x381E2000
,
0x381E4000
,
0x381E6000
,
0x381E8000
,
0x381EA000
,
0x381EC000
,
0x381EE000
,
0x381F0000
,
0x381F2000
,
0x381F4000
,
0x381F6000
,
0x381F8000
,
0x381FA000
,
0x381FC000
,
0x381FE000
,
0x38200000
,
0x38202000
,
0x38204000
,
0x38206000
,
0x38208000
,
0x3820A000
,
0x3820C000
,
0x3820E000
,
0x38210000
,
0x38212000
,
0x38214000
,
0x38216000
,
0x38218000
,
0x3821A000
,
0x3821C000
,
0x3821E000
,
0x38220000
,
0x38222000
,
0x38224000
,
0x38226000
,
0x38228000
,
0x3822A000
,
0x3822C000
,
0x3822E000
,
0x38230000
,
0x38232000
,
0x38234000
,
0x38236000
,
0x38238000
,
0x3823A000
,
0x3823C000
,
0x3823E000
,
0x38240000
,
0x38242000
,
0x38244000
,
0x38246000
,
0x38248000
,
0x3824A000
,
0x3824C000
,
0x3824E000
,
0x38250000
,
0x38252000
,
0x38254000
,
0x38256000
,
0x38258000
,
0x3825A000
,
0x3825C000
,
0x3825E000
,
0x38260000
,
0x38262000
,
0x38264000
,
0x38266000
,
0x38268000
,
0x3826A000
,
0x3826C000
,
0x3826E000
,
0x38270000
,
0x38272000
,
0x38274000
,
0x38276000
,
0x38278000
,
0x3827A000
,
0x3827C000
,
0x3827E000
,
0x38280000
,
0x38282000
,
0x38284000
,
0x38286000
,
0x38288000
,
0x3828A000
,
0x3828C000
,
0x3828E000
,
0x38290000
,
0x38292000
,
0x38294000
,
0x38296000
,
0x38298000
,
0x3829A000
,
0x3829C000
,
0x3829E000
,
0x382A0000
,
0x382A2000
,
0x382A4000
,
0x382A6000
,
0x382A8000
,
0x382AA000
,
0x382AC000
,
0x382AE000
,
0x382B0000
,
0x382B2000
,
0x382B4000
,
0x382B6000
,
0x382B8000
,
0x382BA000
,
0x382BC000
,
0x382BE000
,
0x382C0000
,
0x382C2000
,
0x382C4000
,
0x382C6000
,
0x382C8000
,
0x382CA000
,
0x382CC000
,
0x382CE000
,
0x382D0000
,
0x382D2000
,
0x382D4000
,
0x382D6000
,
0x382D8000
,
0x382DA000
,
0x382DC000
,
0x382DE000
,
0x382E0000
,
0x382E2000
,
0x382E4000
,
0x382E6000
,
0x382E8000
,
0x382EA000
,
0x382EC000
,
0x382EE000
,
0x382F0000
,
0x382F2000
,
0x382F4000
,
0x382F6000
,
0x382F8000
,
0x382FA000
,
0x382FC000
,
0x382FE000
,
0x38300000
,
0x38302000
,
0x38304000
,
0x38306000
,
0x38308000
,
0x3830A000
,
0x3830C000
,
0x3830E000
,
0x38310000
,
0x38312000
,
0x38314000
,
0x38316000
,
0x38318000
,
0x3831A000
,
0x3831C000
,
0x3831E000
,
0x38320000
,
0x38322000
,
0x38324000
,
0x38326000
,
0x38328000
,
0x3832A000
,
0x3832C000
,
0x3832E000
,
0x38330000
,
0x38332000
,
0x38334000
,
0x38336000
,
0x38338000
,
0x3833A000
,
0x3833C000
,
0x3833E000
,
0x38340000
,
0x38342000
,
0x38344000
,
0x38346000
,
0x38348000
,
0x3834A000
,
0x3834C000
,
0x3834E000
,
0x38350000
,
0x38352000
,
0x38354000
,
0x38356000
,
0x38358000
,
0x3835A000
,
0x3835C000
,
0x3835E000
,
0x38360000
,
0x38362000
,
0x38364000
,
0x38366000
,
0x38368000
,
0x3836A000
,
0x3836C000
,
0x3836E000
,
0x38370000
,
0x38372000
,
0x38374000
,
0x38376000
,
0x38378000
,
0x3837A000
,
0x3837C000
,
0x3837E000
,
0x38380000
,
0x38382000
,
0x38384000
,
0x38386000
,
0x38388000
,
0x3838A000
,
0x3838C000
,
0x3838E000
,
0x38390000
,
0x38392000
,
0x38394000
,
0x38396000
,
0x38398000
,
0x3839A000
,
0x3839C000
,
0x3839E000
,
0x383A0000
,
0x383A2000
,
0x383A4000
,
0x383A6000
,
0x383A8000
,
0x383AA000
,
0x383AC000
,
0x383AE000
,
0x383B0000
,
0x383B2000
,
0x383B4000
,
0x383B6000
,
0x383B8000
,
0x383BA000
,
0x383BC000
,
0x383BE000
,
0x383C0000
,
0x383C2000
,
0x383C4000
,
0x383C6000
,
0x383C8000
,
0x383CA000
,
0x383CC000
,
0x383CE000
,
0x383D0000
,
0x383D2000
,
0x383D4000
,
0x383D6000
,
0x383D8000
,
0x383DA000
,
0x383DC000
,
0x383DE000
,
0x383E0000
,
0x383E2000
,
0x383E4000
,
0x383E6000
,
0x383E8000
,
0x383EA000
,
0x383EC000
,
0x383EE000
,
0x383F0000
,
0x383F2000
,
0x383F4000
,
0x383F6000
,
0x383F8000
,
0x383FA000
,
0x383FC000
,
0x383FE000
,
0x38400000
,
0x38402000
,
0x38404000
,
0x38406000
,
0x38408000
,
0x3840A000
,
0x3840C000
,
0x3840E000
,
0x38410000
,
0x38412000
,
0x38414000
,
0x38416000
,
0x38418000
,
0x3841A000
,
0x3841C000
,
0x3841E000
,
0x38420000
,
0x38422000
,
0x38424000
,
0x38426000
,
0x38428000
,
0x3842A000
,
0x3842C000
,
0x3842E000
,
0x38430000
,
0x38432000
,
0x38434000
,
0x38436000
,
0x38438000
,
0x3843A000
,
0x3843C000
,
0x3843E000
,
0x38440000
,
0x38442000
,
0x38444000
,
0x38446000
,
0x38448000
,
0x3844A000
,
0x3844C000
,
0x3844E000
,
0x38450000
,
0x38452000
,
0x38454000
,
0x38456000
,
0x38458000
,
0x3845A000
,
0x3845C000
,
0x3845E000
,
0x38460000
,
0x38462000
,
0x38464000
,
0x38466000
,
0x38468000
,
0x3846A000
,
0x3846C000
,
0x3846E000
,
0x38470000
,
0x38472000
,
0x38474000
,
0x38476000
,
0x38478000
,
0x3847A000
,
0x3847C000
,
0x3847E000
,
0x38480000
,
0x38482000
,
0x38484000
,
0x38486000
,
0x38488000
,
0x3848A000
,
0x3848C000
,
0x3848E000
,
0x38490000
,
0x38492000
,
0x38494000
,
0x38496000
,
0x38498000
,
0x3849A000
,
0x3849C000
,
0x3849E000
,
0x384A0000
,
0x384A2000
,
0x384A4000
,
0x384A6000
,
0x384A8000
,
0x384AA000
,
0x384AC000
,
0x384AE000
,
0x384B0000
,
0x384B2000
,
0x384B4000
,
0x384B6000
,
0x384B8000
,
0x384BA000
,
0x384BC000
,
0x384BE000
,
0x384C0000
,
0x384C2000
,
0x384C4000
,
0x384C6000
,
0x384C8000
,
0x384CA000
,
0x384CC000
,
0x384CE000
,
0x384D0000
,
0x384D2000
,
0x384D4000
,
0x384D6000
,
0x384D8000
,
0x384DA000
,
0x384DC000
,
0x384DE000
,
0x384E0000
,
0x384E2000
,
0x384E4000
,
0x384E6000
,
0x384E8000
,
0x384EA000
,
0x384EC000
,
0x384EE000
,
0x384F0000
,
0x384F2000
,
0x384F4000
,
0x384F6000
,
0x384F8000
,
0x384FA000
,
0x384FC000
,
0x384FE000
,
0x38500000
,
0x38502000
,
0x38504000
,
0x38506000
,
0x38508000
,
0x3850A000
,
0x3850C000
,
0x3850E000
,
0x38510000
,
0x38512000
,
0x38514000
,
0x38516000
,
0x38518000
,
0x3851A000
,
0x3851C000
,
0x3851E000
,
0x38520000
,
0x38522000
,
0x38524000
,
0x38526000
,
0x38528000
,
0x3852A000
,
0x3852C000
,
0x3852E000
,
0x38530000
,
0x38532000
,
0x38534000
,
0x38536000
,
0x38538000
,
0x3853A000
,
0x3853C000
,
0x3853E000
,
0x38540000
,
0x38542000
,
0x38544000
,
0x38546000
,
0x38548000
,
0x3854A000
,
0x3854C000
,
0x3854E000
,
0x38550000
,
0x38552000
,
0x38554000
,
0x38556000
,
0x38558000
,
0x3855A000
,
0x3855C000
,
0x3855E000
,
0x38560000
,
0x38562000
,
0x38564000
,
0x38566000
,
0x38568000
,
0x3856A000
,
0x3856C000
,
0x3856E000
,
0x38570000
,
0x38572000
,
0x38574000
,
0x38576000
,
0x38578000
,
0x3857A000
,
0x3857C000
,
0x3857E000
,
0x38580000
,
0x38582000
,
0x38584000
,
0x38586000
,
0x38588000
,
0x3858A000
,
0x3858C000
,
0x3858E000
,
0x38590000
,
0x38592000
,
0x38594000
,
0x38596000
,
0x38598000
,
0x3859A000
,
0x3859C000
,
0x3859E000
,
0x385A0000
,
0x385A2000
,
0x385A4000
,
0x385A6000
,
0x385A8000
,
0x385AA000
,
0x385AC000
,
0x385AE000
,
0x385B0000
,
0x385B2000
,
0x385B4000
,
0x385B6000
,
0x385B8000
,
0x385BA000
,
0x385BC000
,
0x385BE000
,
0x385C0000
,
0x385C2000
,
0x385C4000
,
0x385C6000
,
0x385C8000
,
0x385CA000
,
0x385CC000
,
0x385CE000
,
0x385D0000
,
0x385D2000
,
0x385D4000
,
0x385D6000
,
0x385D8000
,
0x385DA000
,
0x385DC000
,
0x385DE000
,
0x385E0000
,
0x385E2000
,
0x385E4000
,
0x385E6000
,
0x385E8000
,
0x385EA000
,
0x385EC000
,
0x385EE000
,
0x385F0000
,
0x385F2000
,
0x385F4000
,
0x385F6000
,
0x385F8000
,
0x385FA000
,
0x385FC000
,
0x385FE000
,
0x38600000
,
0x38602000
,
0x38604000
,
0x38606000
,
0x38608000
,
0x3860A000
,
0x3860C000
,
0x3860E000
,
0x38610000
,
0x38612000
,
0x38614000
,
0x38616000
,
0x38618000
,
0x3861A000
,
0x3861C000
,
0x3861E000
,
0x38620000
,
0x38622000
,
0x38624000
,
0x38626000
,
0x38628000
,
0x3862A000
,
0x3862C000
,
0x3862E000
,
0x38630000
,
0x38632000
,
0x38634000
,
0x38636000
,
0x38638000
,
0x3863A000
,
0x3863C000
,
0x3863E000
,
0x38640000
,
0x38642000
,
0x38644000
,
0x38646000
,
0x38648000
,
0x3864A000
,
0x3864C000
,
0x3864E000
,
0x38650000
,
0x38652000
,
0x38654000
,
0x38656000
,
0x38658000
,
0x3865A000
,
0x3865C000
,
0x3865E000
,
0x38660000
,
0x38662000
,
0x38664000
,
0x38666000
,
0x38668000
,
0x3866A000
,
0x3866C000
,
0x3866E000
,
0x38670000
,
0x38672000
,
0x38674000
,
0x38676000
,
0x38678000
,
0x3867A000
,
0x3867C000
,
0x3867E000
,
0x38680000
,
0x38682000
,
0x38684000
,
0x38686000
,
0x38688000
,
0x3868A000
,
0x3868C000
,
0x3868E000
,
0x38690000
,
0x38692000
,
0x38694000
,
0x38696000
,
0x38698000
,
0x3869A000
,
0x3869C000
,
0x3869E000
,
0x386A0000
,
0x386A2000
,
0x386A4000
,
0x386A6000
,
0x386A8000
,
0x386AA000
,
0x386AC000
,
0x386AE000
,
0x386B0000
,
0x386B2000
,
0x386B4000
,
0x386B6000
,
0x386B8000
,
0x386BA000
,
0x386BC000
,
0x386BE000
,
0x386C0000
,
0x386C2000
,
0x386C4000
,
0x386C6000
,
0x386C8000
,
0x386CA000
,
0x386CC000
,
0x386CE000
,
0x386D0000
,
0x386D2000
,
0x386D4000
,
0x386D6000
,
0x386D8000
,
0x386DA000
,
0x386DC000
,
0x386DE000
,
0x386E0000
,
0x386E2000
,
0x386E4000
,
0x386E6000
,
0x386E8000
,
0x386EA000
,
0x386EC000
,
0x386EE000
,
0x386F0000
,
0x386F2000
,
0x386F4000
,
0x386F6000
,
0x386F8000
,
0x386FA000
,
0x386FC000
,
0x386FE000
,
0x38700000
,
0x38702000
,
0x38704000
,
0x38706000
,
0x38708000
,
0x3870A000
,
0x3870C000
,
0x3870E000
,
0x38710000
,
0x38712000
,
0x38714000
,
0x38716000
,
0x38718000
,
0x3871A000
,
0x3871C000
,
0x3871E000
,
0x38720000
,
0x38722000
,
0x38724000
,
0x38726000
,
0x38728000
,
0x3872A000
,
0x3872C000
,
0x3872E000
,
0x38730000
,
0x38732000
,
0x38734000
,
0x38736000
,
0x38738000
,
0x3873A000
,
0x3873C000
,
0x3873E000
,
0x38740000
,
0x38742000
,
0x38744000
,
0x38746000
,
0x38748000
,
0x3874A000
,
0x3874C000
,
0x3874E000
,
0x38750000
,
0x38752000
,
0x38754000
,
0x38756000
,
0x38758000
,
0x3875A000
,
0x3875C000
,
0x3875E000
,
0x38760000
,
0x38762000
,
0x38764000
,
0x38766000
,
0x38768000
,
0x3876A000
,
0x3876C000
,
0x3876E000
,
0x38770000
,
0x38772000
,
0x38774000
,
0x38776000
,
0x38778000
,
0x3877A000
,
0x3877C000
,
0x3877E000
,
0x38780000
,
0x38782000
,
0x38784000
,
0x38786000
,
0x38788000
,
0x3878A000
,
0x3878C000
,
0x3878E000
,
0x38790000
,
0x38792000
,
0x38794000
,
0x38796000
,
0x38798000
,
0x3879A000
,
0x3879C000
,
0x3879E000
,
0x387A0000
,
0x387A2000
,
0x387A4000
,
0x387A6000
,
0x387A8000
,
0x387AA000
,
0x387AC000
,
0x387AE000
,
0x387B0000
,
0x387B2000
,
0x387B4000
,
0x387B6000
,
0x387B8000
,
0x387BA000
,
0x387BC000
,
0x387BE000
,
0x387C0000
,
0x387C2000
,
0x387C4000
,
0x387C6000
,
0x387C8000
,
0x387CA000
,
0x387CC000
,
0x387CE000
,
0x387D0000
,
0x387D2000
,
0x387D4000
,
0x387D6000
,
0x387D8000
,
0x387DA000
,
0x387DC000
,
0x387DE000
,
0x387E0000
,
0x387E2000
,
0x387E4000
,
0x387E6000
,
0x387E8000
,
0x387EA000
,
0x387EC000
,
0x387EE000
,
0x387F0000
,
0x387F2000
,
0x387F4000
,
0x387F6000
,
0x387F8000
,
0x387FA000
,
0x387FC000
,
0x387FE000
};
static
const
uint32
exponent_table
[
64
]
=
{
0x00000000
,
0x00800000
,
0x01000000
,
0x01800000
,
0x02000000
,
0x02800000
,
0x03000000
,
0x03800000
,
0x04000000
,
0x04800000
,
0x05000000
,
0x05800000
,
0x06000000
,
0x06800000
,
0x07000000
,
0x07800000
,
0x08000000
,
0x08800000
,
0x09000000
,
0x09800000
,
0x0A000000
,
0x0A800000
,
0x0B000000
,
0x0B800000
,
0x0C000000
,
0x0C800000
,
0x0D000000
,
0x0D800000
,
0x0E000000
,
0x0E800000
,
0x0F000000
,
0x47800000
,
0x80000000
,
0x80800000
,
0x81000000
,
0x81800000
,
0x82000000
,
0x82800000
,
0x83000000
,
0x83800000
,
0x84000000
,
0x84800000
,
0x85000000
,
0x85800000
,
0x86000000
,
0x86800000
,
0x87000000
,
0x87800000
,
0x88000000
,
0x88800000
,
0x89000000
,
0x89800000
,
0x8A000000
,
0x8A800000
,
0x8B000000
,
0x8B800000
,
0x8C000000
,
0x8C800000
,
0x8D000000
,
0x8D800000
,
0x8E000000
,
0x8E800000
,
0x8F000000
,
0xC7800000
};
static
const
unsigned
short
offset_table
[
64
]
=
{
0
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
0
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
,
1024
};
uint32
bits
=
mantissa_table
[
offset_table
[
value
>>
10
]
+
(
value
&
0x3FF
)]
+
exponent_table
[
value
>>
10
];
// return *reinterpret_cast<float*>(&bits); //violating strict aliasing!
float
out
;
std
::
memcpy
(
&
out
,
&
bits
,
sizeof
(
float
));
return
out
;
}
/// Convert half-precision to IEEE double-precision.
/// \param value binary representation of half-precision value
/// \return double-precision value
inline
double
half2float_impl
(
uint16
value
,
double
,
true_type
)
{
typedef
bits
<
float
>::
type
uint32
;
typedef
bits
<
double
>::
type
uint64
;
uint32
hi
=
static_cast
<
uint32
>
(
value
&
0x8000
)
<<
16
;
int
abs
=
value
&
0x7FFF
;
if
(
abs
)
{
hi
|=
0x3F000000
<<
static_cast
<
unsigned
>
(
abs
>=
0x7C00
);
for
(;
abs
<
0x400
;
abs
<<=
1
,
hi
-=
0x100000
)
;
hi
+=
static_cast
<
uint32
>
(
abs
)
<<
10
;
}
uint64
bits
=
static_cast
<
uint64
>
(
hi
)
<<
32
;
// return *reinterpret_cast<double*>(&bits); //violating strict aliasing!
double
out
;
std
::
memcpy
(
&
out
,
&
bits
,
sizeof
(
double
));
return
out
;
}
/// Convert half-precision to non-IEEE floating point.
/// \tparam T type to convert to (builtin integer type)
/// \param value binary representation of half-precision value
/// \return floating point value
template
<
typename
T
>
T
half2float_impl
(
uint16
value
,
T
,
...)
{
T
out
;
int
abs
=
value
&
0x7FFF
;
if
(
abs
>
0x7C00
)
out
=
std
::
numeric_limits
<
T
>::
has_quiet_NaN
?
std
::
numeric_limits
<
T
>::
quiet_NaN
()
:
T
();
else
if
(
abs
==
0x7C00
)
out
=
std
::
numeric_limits
<
T
>::
has_infinity
?
std
::
numeric_limits
<
T
>::
infinity
()
:
std
::
numeric_limits
<
T
>::
max
();
else
if
(
abs
>
0x3FF
)
out
=
std
::
ldexp
(
static_cast
<
T
>
((
abs
&
0x3FF
)
|
0x400
),
(
abs
>>
10
)
-
25
);
else
out
=
std
::
ldexp
(
static_cast
<
T
>
(
abs
),
-
24
);
return
(
value
&
0x8000
)
?
-
out
:
out
;
}
/// Convert half-precision to floating point.
/// \tparam T type to convert to (builtin integer type)
/// \param value binary representation of half-precision value
/// \return floating point value
template
<
typename
T
>
T
half2float
(
uint16
value
)
{
return
half2float_impl
(
value
,
T
(),
bool_type
<
std
::
numeric_limits
<
T
>::
is_iec559
&&
sizeof
(
typename
bits
<
T
>::
type
)
==
sizeof
(
T
)
>
());
}
/// Convert half-precision floating point to integer.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \tparam E `true` for round to even, `false` for round away from zero
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
/// \param value binary representation of half-precision value
/// \return integral value
template
<
std
::
float_round_style
R
,
bool
E
,
typename
T
>
T
half2int_impl
(
uint16
value
)
{
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
static_assert
(
std
::
is_integral
<
T
>::
value
,
"half to int conversion only supports builtin integer types"
);
#endif
unsigned
int
e
=
value
&
0x7FFF
;
if
(
e
>=
0x7C00
)
return
(
value
&
0x8000
)
?
std
::
numeric_limits
<
T
>::
min
()
:
std
::
numeric_limits
<
T
>::
max
();
if
(
e
<
0x3800
)
{
if
(
R
==
std
::
round_toward_infinity
)
return
T
(
~
(
value
>>
15
)
&
(
e
!=
0
));
else
if
(
R
==
std
::
round_toward_neg_infinity
)
return
-
T
(
value
>
0x8000
);
return
T
();
}
unsigned
int
m
=
(
value
&
0x3FF
)
|
0x400
;
e
>>=
10
;
if
(
e
<
25
)
{
if
(
R
==
std
::
round_to_nearest
)
m
+=
(
1
<<
(
24
-
e
))
-
(
~
(
m
>>
(
25
-
e
))
&
E
);
else
if
(
R
==
std
::
round_toward_infinity
)
m
+=
((
value
>>
15
)
-
1
)
&
((
1
<<
(
25
-
e
))
-
1U
);
else
if
(
R
==
std
::
round_toward_neg_infinity
)
m
+=
-
(
value
>>
15
)
&
((
1
<<
(
25
-
e
))
-
1U
);
m
>>=
25
-
e
;
}
else
m
<<=
e
-
25
;
return
(
value
&
0x8000
)
?
-
static_cast
<
T
>
(
m
)
:
static_cast
<
T
>
(
m
);
}
/// Convert half-precision floating point to integer.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
/// \param value binary representation of half-precision value
/// \return integral value
template
<
std
::
float_round_style
R
,
typename
T
>
T
half2int
(
uint16
value
)
{
return
half2int_impl
<
R
,
HALF_ROUND_TIES_TO_EVEN
,
T
>
(
value
);
}
/// Convert half-precision floating point to integer using round-to-nearest-away-from-zero.
/// \tparam T type to convert to (buitlin integer type with at least 16 bits precision, excluding any implicit sign bits)
/// \param value binary representation of half-precision value
/// \return integral value
template
<
typename
T
>
T
half2int_up
(
uint16
value
)
{
return
half2int_impl
<
std
::
round_to_nearest
,
0
,
T
>
(
value
);
}
/// Round half-precision number to nearest integer value.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \tparam E `true` for round to even, `false` for round away from zero
/// \param value binary representation of half-precision value
/// \return half-precision bits for nearest integral value
template
<
std
::
float_round_style
R
,
bool
E
>
uint16
round_half_impl
(
uint16
value
)
{
unsigned
int
e
=
value
&
0x7FFF
;
uint16
result
=
value
;
if
(
e
<
0x3C00
)
{
result
&=
0x8000
;
if
(
R
==
std
::
round_to_nearest
)
result
|=
0x3C00U
&
-
(
e
>=
(
0x3800
+
E
));
else
if
(
R
==
std
::
round_toward_infinity
)
result
|=
0x3C00U
&
-
(
~
(
value
>>
15
)
&
(
e
!=
0
));
else
if
(
R
==
std
::
round_toward_neg_infinity
)
result
|=
0x3C00U
&
-
(
value
>
0x8000
);
}
else
if
(
e
<
0x6400
)
{
e
=
25
-
(
e
>>
10
);
unsigned
int
mask
=
(
1
<<
e
)
-
1
;
if
(
R
==
std
::
round_to_nearest
)
result
+=
(
1
<<
(
e
-
1
))
-
(
~
(
result
>>
e
)
&
E
);
else
if
(
R
==
std
::
round_toward_infinity
)
result
+=
mask
&
((
value
>>
15
)
-
1
);
else
if
(
R
==
std
::
round_toward_neg_infinity
)
result
+=
mask
&
-
(
value
>>
15
);
result
&=
~
mask
;
}
return
result
;
}
/// Round half-precision number to nearest integer value.
/// \tparam R rounding mode to use, `std::round_indeterminate` for fastest rounding
/// \param value binary representation of half-precision value
/// \return half-precision bits for nearest integral value
template
<
std
::
float_round_style
R
>
uint16
round_half
(
uint16
value
)
{
return
round_half_impl
<
R
,
HALF_ROUND_TIES_TO_EVEN
>
(
value
);
}
/// Round half-precision number to nearest integer value using round-to-nearest-away-from-zero.
/// \param value binary representation of half-precision value
/// \return half-precision bits for nearest integral value
inline
uint16
round_half_up
(
uint16
value
)
{
return
round_half_impl
<
std
::
round_to_nearest
,
0
>
(
value
);
}
/// \}
struct
functions
;
template
<
typename
>
struct
unary_specialized
;
template
<
typename
,
typename
>
struct
binary_specialized
;
template
<
typename
,
typename
,
std
::
float_round_style
>
struct
half_caster
;
}
/// Half-precision floating point type.
/// This class implements an IEEE-conformant half-precision floating point type with the usual arithmetic operators and
/// conversions. It is implicitly convertible to single-precision floating point, which makes artihmetic expressions and
/// functions with mixed-type operands to be of the most precise operand type. Additionally all arithmetic operations
/// (and many mathematical functions) are carried out in single-precision internally. All conversions from single- to
/// half-precision are done using the library's default rounding mode, but temporary results inside chained arithmetic
/// expressions are kept in single-precision as long as possible (while of course still maintaining a strong half-precision type).
///
/// According to the C++98/03 definition, the half type is not a POD type. But according to C++11's less strict and
/// extended definitions it is both a standard layout type and a trivially copyable type (even if not a POD type), which
/// means it can be standard-conformantly copied using raw binary copies. But in this context some more words about the
/// actual size of the type. Although the half is representing an IEEE 16-bit type, it does not neccessarily have to be of
/// exactly 16-bits size. But on any reasonable implementation the actual binary representation of this type will most
/// probably not ivolve any additional "magic" or padding beyond the simple binary representation of the underlying 16-bit
/// IEEE number, even if not strictly guaranteed by the standard. But even then it only has an actual size of 16 bits if
/// your C++ implementation supports an unsigned integer type of exactly 16 bits width. But this should be the case on
/// nearly any reasonable platform.
///
/// So if your C++ implementation is not totally exotic or imposes special alignment requirements, it is a reasonable
/// assumption that the data of a half is just comprised of the 2 bytes of the underlying IEEE representation.
class
half
{
friend
struct
detail
::
functions
;
friend
struct
detail
::
unary_specialized
<
half
>
;
friend
struct
detail
::
binary_specialized
<
half
,
half
>
;
template
<
typename
,
typename
,
std
::
float_round_style
>
friend
struct
detail
::
half_caster
;
friend
class
std
::
numeric_limits
<
half
>
;
#if HALF_ENABLE_CPP11_HASH
friend
struct
std
::
hash
<
half
>
;
#endif
#if HALF_ENABLE_CPP11_USER_LITERALS
friend
half
literal
::
operator
""
_h
(
long
double
);
#endif
public:
/// Default constructor.
/// This initializes the half to 0. Although this does not match the builtin types' default-initialization semantics
/// and may be less efficient than no initialization, it is needed to provide proper value-initialization semantics.
HALF_CONSTEXPR
half
()
HALF_NOEXCEPT
:
data_
()
{}
/// Copy constructor.
/// \tparam T type of concrete half expression
/// \param rhs half expression to copy from
half
(
detail
::
expr
rhs
)
:
data_
(
detail
::
float2half
<
round_style
>
(
static_cast
<
float
>
(
rhs
)))
{}
/// Conversion constructor.
/// \param rhs float to convert
half
(
float
rhs
)
:
data_
(
detail
::
float2half
<
round_style
>
(
rhs
))
{}
/// Conversion to single-precision.
/// \return single precision value representing expression value
operator
float
()
const
{
return
detail
::
half2float
<
float
>
(
data_
);
}
/// Assignment operator.
/// \tparam T type of concrete half expression
/// \param rhs half expression to copy from
/// \return reference to this half
half
&
operator
=
(
detail
::
expr
rhs
)
{
return
*
this
=
static_cast
<
float
>
(
rhs
);
}
/// Arithmetic assignment.
/// \tparam T type of concrete half expression
/// \param rhs half expression to add
/// \return reference to this half
template
<
typename
T
>
typename
detail
::
enable
<
half
&
,
T
>::
type
operator
+=
(
T
rhs
)
{
return
*
this
+=
static_cast
<
float
>
(
rhs
);
}
/// Arithmetic assignment.
/// \tparam T type of concrete half expression
/// \param rhs half expression to subtract
/// \return reference to this half
template
<
typename
T
>
typename
detail
::
enable
<
half
&
,
T
>::
type
operator
-=
(
T
rhs
)
{
return
*
this
-=
static_cast
<
float
>
(
rhs
);
}
/// Arithmetic assignment.
/// \tparam T type of concrete half expression
/// \param rhs half expression to multiply with
/// \return reference to this half
template
<
typename
T
>
typename
detail
::
enable
<
half
&
,
T
>::
type
operator
*=
(
T
rhs
)
{
return
*
this
*=
static_cast
<
float
>
(
rhs
);
}
/// Arithmetic assignment.
/// \tparam T type of concrete half expression
/// \param rhs half expression to divide by
/// \return reference to this half
template
<
typename
T
>
typename
detail
::
enable
<
half
&
,
T
>::
type
operator
/=
(
T
rhs
)
{
return
*
this
/=
static_cast
<
float
>
(
rhs
);
}
/// Assignment operator.
/// \param rhs single-precision value to copy from
/// \return reference to this half
half
&
operator
=
(
float
rhs
)
{
data_
=
detail
::
float2half
<
round_style
>
(
rhs
);
return
*
this
;
}
/// Arithmetic assignment.
/// \param rhs single-precision value to add
/// \return reference to this half
half
&
operator
+=
(
float
rhs
)
{
data_
=
detail
::
float2half
<
round_style
>
(
detail
::
half2float
<
float
>
(
data_
)
+
rhs
);
return
*
this
;
}
/// Arithmetic assignment.
/// \param rhs single-precision value to subtract
/// \return reference to this half
half
&
operator
-=
(
float
rhs
)
{
data_
=
detail
::
float2half
<
round_style
>
(
detail
::
half2float
<
float
>
(
data_
)
-
rhs
);
return
*
this
;
}
/// Arithmetic assignment.
/// \param rhs single-precision value to multiply with
/// \return reference to this half
half
&
operator
*=
(
float
rhs
)
{
data_
=
detail
::
float2half
<
round_style
>
(
detail
::
half2float
<
float
>
(
data_
)
*
rhs
);
return
*
this
;
}
/// Arithmetic assignment.
/// \param rhs single-precision value to divide by
/// \return reference to this half
half
&
operator
/=
(
float
rhs
)
{
data_
=
detail
::
float2half
<
round_style
>
(
detail
::
half2float
<
float
>
(
data_
)
/
rhs
);
return
*
this
;
}
/// Prefix increment.
/// \return incremented half value
half
&
operator
++
()
{
return
*
this
+=
1.0
f
;
}
/// Prefix decrement.
/// \return decremented half value
half
&
operator
--
()
{
return
*
this
-=
1.0
f
;
}
/// Postfix increment.
/// \return non-incremented half value
half
operator
++
(
int
)
{
half
out
(
*
this
);
++*
this
;
return
out
;
}
/// Postfix decrement.
/// \return non-decremented half value
half
operator
--
(
int
)
{
half
out
(
*
this
);
--*
this
;
return
out
;
}
private:
/// Rounding mode to use
static
const
std
::
float_round_style
round_style
=
(
std
::
float_round_style
)(
HALF_ROUND_STYLE
);
/// Constructor.
/// \param bits binary representation to set half to
HALF_CONSTEXPR
half
(
detail
::
binary_t
,
detail
::
uint16
bits
)
HALF_NOEXCEPT
:
data_
(
bits
)
{}
/// Internal binary representation
detail
::
uint16
data_
;
};
#if HALF_ENABLE_CPP11_USER_LITERALS
namespace
literal
{
/// Half literal.
/// While this returns an actual half-precision value, half literals can unfortunately not be constant expressions due
/// to rather involved conversions.
/// \param value literal value
/// \return half with given value (if representable)
inline
half
operator
""
_h
(
long
double
value
)
{
return
half
(
detail
::
binary
,
detail
::
float2half
<
half
::
round_style
>
(
value
));
}
}
#endif
namespace
detail
{
/// Wrapper implementing unspecialized half-precision functions.
struct
functions
{
/// Addition implementation.
/// \param x first operand
/// \param y second operand
/// \return Half-precision sum stored in single-precision
static
expr
plus
(
float
x
,
float
y
)
{
return
expr
(
x
+
y
);
}
/// Subtraction implementation.
/// \param x first operand
/// \param y second operand
/// \return Half-precision difference stored in single-precision
static
expr
minus
(
float
x
,
float
y
)
{
return
expr
(
x
-
y
);
}
/// Multiplication implementation.
/// \param x first operand
/// \param y second operand
/// \return Half-precision product stored in single-precision
static
expr
multiplies
(
float
x
,
float
y
)
{
return
expr
(
x
*
y
);
}
/// Division implementation.
/// \param x first operand
/// \param y second operand
/// \return Half-precision quotient stored in single-precision
static
expr
divides
(
float
x
,
float
y
)
{
return
expr
(
x
/
y
);
}
/// Output implementation.
/// \param out stream to write to
/// \param arg value to write
/// \return reference to stream
template
<
typename
charT
,
typename
traits
>
static
std
::
basic_ostream
<
charT
,
traits
>&
write
(
std
::
basic_ostream
<
charT
,
traits
>
&
out
,
float
arg
)
{
return
out
<<
arg
;
}
/// Input implementation.
/// \param in stream to read from
/// \param arg half to read into
/// \return reference to stream
template
<
typename
charT
,
typename
traits
>
static
std
::
basic_istream
<
charT
,
traits
>&
read
(
std
::
basic_istream
<
charT
,
traits
>
&
in
,
half
&
arg
)
{
float
f
;
if
(
in
>>
f
)
arg
=
f
;
return
in
;
}
/// Modulo implementation.
/// \param x first operand
/// \param y second operand
/// \return Half-precision division remainder stored in single-precision
static
expr
fmod
(
float
x
,
float
y
)
{
return
expr
(
std
::
fmod
(
x
,
y
));
}
/// Remainder implementation.
/// \param x first operand
/// \param y second operand
/// \return Half-precision division remainder stored in single-precision
static
expr
remainder
(
float
x
,
float
y
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
remainder
(
x
,
y
));
#else
if
(
builtin_isnan
(
x
)
||
builtin_isnan
(
y
))
return
expr
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
float
ax
=
std
::
fabs
(
x
),
ay
=
std
::
fabs
(
y
);
if
(
ax
>=
65536.0
f
||
ay
<
std
::
ldexp
(
1.0
f
,
-
24
))
return
expr
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
if
(
ay
>=
65536.0
f
)
return
expr
(
x
);
if
(
ax
==
ay
)
return
expr
(
builtin_signbit
(
x
)
?
-
0.0
f
:
0.0
f
);
ax
=
std
::
fmod
(
ax
,
ay
+
ay
);
float
y2
=
0.5
f
*
ay
;
if
(
ax
>
y2
)
{
ax
-=
ay
;
if
(
ax
>=
y2
)
ax
-=
ay
;
}
return
expr
(
builtin_signbit
(
x
)
?
-
ax
:
ax
);
#endif
}
/// Remainder implementation.
/// \param x first operand
/// \param y second operand
/// \param quo address to store quotient bits at
/// \return Half-precision division remainder stored in single-precision
static
expr
remquo
(
float
x
,
float
y
,
int
*
quo
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
remquo
(
x
,
y
,
quo
));
#else
if
(
builtin_isnan
(
x
)
||
builtin_isnan
(
y
))
return
expr
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
bool
sign
=
builtin_signbit
(
x
),
qsign
=
static_cast
<
bool
>
(
sign
^
builtin_signbit
(
y
));
float
ax
=
std
::
fabs
(
x
),
ay
=
std
::
fabs
(
y
);
if
(
ax
>=
65536.0
f
||
ay
<
std
::
ldexp
(
1.0
f
,
-
24
))
return
expr
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
if
(
ay
>=
65536.0
f
)
return
expr
(
x
);
if
(
ax
==
ay
)
return
*
quo
=
qsign
?
-
1
:
1
,
expr
(
sign
?
-
0.0
f
:
0.0
f
);
ax
=
std
::
fmod
(
ax
,
8.0
f
*
ay
);
int
cquo
=
0
;
if
(
ax
>=
4.0
f
*
ay
)
{
ax
-=
4.0
f
*
ay
;
cquo
+=
4
;
}
if
(
ax
>=
2.0
f
*
ay
)
{
ax
-=
2.0
f
*
ay
;
cquo
+=
2
;
}
float
y2
=
0.5
f
*
ay
;
if
(
ax
>
y2
)
{
ax
-=
ay
;
++
cquo
;
if
(
ax
>=
y2
)
{
ax
-=
ay
;
++
cquo
;
}
}
return
*
quo
=
qsign
?
-
cquo
:
cquo
,
expr
(
sign
?
-
ax
:
ax
);
#endif
}
/// Positive difference implementation.
/// \param x first operand
/// \param y second operand
/// \return Positive difference stored in single-precision
static
expr
fdim
(
float
x
,
float
y
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
fdim
(
x
,
y
));
#else
return
expr
((
x
<=
y
)
?
0.0
f
:
(
x
-
y
));
#endif
}
/// Fused multiply-add implementation.
/// \param x first operand
/// \param y second operand
/// \param z third operand
/// \return \a x * \a y + \a z stored in single-precision
static
expr
fma
(
float
x
,
float
y
,
float
z
)
{
#if HALF_ENABLE_CPP11_CMATH && defined(FP_FAST_FMAF)
return
expr
(
std
::
fma
(
x
,
y
,
z
));
#else
return
expr
(
x
*
y
+
z
);
#endif
}
/// Get NaN.
/// \return Half-precision quiet NaN
static
half
nanh
()
{
return
half
(
binary
,
0x7FFF
);
}
/// Exponential implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
exp
(
float
arg
)
{
return
expr
(
std
::
exp
(
arg
));
}
/// Exponential implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
expm1
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
expm1
(
arg
));
#else
return
expr
(
static_cast
<
float
>
(
std
::
exp
(
static_cast
<
double
>
(
arg
))
-
1.0
));
#endif
}
/// Binary exponential implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
exp2
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
exp2
(
arg
));
#else
return
expr
(
static_cast
<
float
>
(
std
::
exp
(
arg
*
0.69314718055994530941723212145818
)));
#endif
}
/// Logarithm implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
log
(
float
arg
)
{
return
expr
(
std
::
log
(
arg
));
}
/// Common logarithm implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
log10
(
float
arg
)
{
return
expr
(
std
::
log10
(
arg
));
}
/// Logarithm implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
log1p
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
log1p
(
arg
));
#else
return
expr
(
static_cast
<
float
>
(
std
::
log
(
1.0
+
arg
)));
#endif
}
/// Binary logarithm implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
log2
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
log2
(
arg
));
#else
return
expr
(
static_cast
<
float
>
(
std
::
log
(
static_cast
<
double
>
(
arg
))
*
1.4426950408889634073599246810019
));
#endif
}
/// Square root implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
sqrt
(
float
arg
)
{
return
expr
(
std
::
sqrt
(
arg
));
}
/// Cubic root implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
cbrt
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
cbrt
(
arg
));
#else
if
(
builtin_isnan
(
arg
)
||
builtin_isinf
(
arg
))
return
expr
(
arg
);
return
expr
(
builtin_signbit
(
arg
)
?
-
static_cast
<
float
>
(
std
::
pow
(
-
static_cast
<
double
>
(
arg
),
1.0
/
3.0
))
:
static_cast
<
float
>
(
std
::
pow
(
static_cast
<
double
>
(
arg
),
1.0
/
3.0
)));
#endif
}
/// Hypotenuse implementation.
/// \param x first argument
/// \param y second argument
/// \return function value stored in single-preicision
static
expr
hypot
(
float
x
,
float
y
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
hypot
(
x
,
y
));
#else
return
expr
((
builtin_isinf
(
x
)
||
builtin_isinf
(
y
))
?
std
::
numeric_limits
<
float
>::
infinity
()
:
static_cast
<
float
>
(
std
::
sqrt
(
static_cast
<
double
>
(
x
)
*
x
+
static_cast
<
double
>
(
y
)
*
y
)));
#endif
}
/// Power implementation.
/// \param base value to exponentiate
/// \param exp power to expontiate to
/// \return function value stored in single-preicision
static
expr
pow
(
float
base
,
float
exp
)
{
return
expr
(
std
::
pow
(
base
,
exp
));
}
/// Sine implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
sin
(
float
arg
)
{
return
expr
(
std
::
sin
(
arg
));
}
/// Cosine implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
cos
(
float
arg
)
{
return
expr
(
std
::
cos
(
arg
));
}
/// Tan implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
tan
(
float
arg
)
{
return
expr
(
std
::
tan
(
arg
));
}
/// Arc sine implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
asin
(
float
arg
)
{
return
expr
(
std
::
asin
(
arg
));
}
/// Arc cosine implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
acos
(
float
arg
)
{
return
expr
(
std
::
acos
(
arg
));
}
/// Arc tangent implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
atan
(
float
arg
)
{
return
expr
(
std
::
atan
(
arg
));
}
/// Arc tangent implementation.
/// \param x first argument
/// \param y second argument
/// \return function value stored in single-preicision
static
expr
atan2
(
float
x
,
float
y
)
{
return
expr
(
std
::
atan2
(
x
,
y
));
}
/// Hyperbolic sine implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
sinh
(
float
arg
)
{
return
expr
(
std
::
sinh
(
arg
));
}
/// Hyperbolic cosine implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
cosh
(
float
arg
)
{
return
expr
(
std
::
cosh
(
arg
));
}
/// Hyperbolic tangent implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
tanh
(
float
arg
)
{
return
expr
(
std
::
tanh
(
arg
));
}
/// Hyperbolic area sine implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
asinh
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
asinh
(
arg
));
#else
return
expr
((
arg
==-
std
::
numeric_limits
<
float
>::
infinity
())
?
arg
:
static_cast
<
float
>
(
std
::
log
(
arg
+
std
::
sqrt
(
arg
*
arg
+
1.0
))));
#endif
}
/// Hyperbolic area cosine implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
acosh
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
acosh
(
arg
));
#else
return
expr
((
arg
<-
1.0
f
)
?
std
::
numeric_limits
<
float
>::
quiet_NaN
()
:
static_cast
<
float
>
(
std
::
log
(
arg
+
std
::
sqrt
(
arg
*
arg
-
1.0
))));
#endif
}
/// Hyperbolic area tangent implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
atanh
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
atanh
(
arg
));
#else
return
expr
(
static_cast
<
float
>
(
0.5
*
std
::
log
((
1.0
+
arg
)
/
(
1.0
-
arg
))));
#endif
}
/// Error function implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
erf
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
erf
(
arg
));
#else
return
expr
(
static_cast
<
float
>
(
erf
(
static_cast
<
double
>
(
arg
))));
#endif
}
/// Complementary implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
erfc
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
erfc
(
arg
));
#else
return
expr
(
static_cast
<
float
>
(
1.0
-
erf
(
static_cast
<
double
>
(
arg
))));
#endif
}
/// Gamma logarithm implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
lgamma
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
lgamma
(
arg
));
#else
if
(
builtin_isinf
(
arg
))
return
expr
(
std
::
numeric_limits
<
float
>::
infinity
());
if
(
arg
<
0.0
f
)
{
float
i
,
f
=
std
::
modf
(
-
arg
,
&
i
);
if
(
f
==
0.0
f
)
return
expr
(
std
::
numeric_limits
<
float
>::
infinity
());
return
expr
(
static_cast
<
float
>
(
1.1447298858494001741434273513531
-
std
::
log
(
std
::
abs
(
std
::
sin
(
3.1415926535897932384626433832795
*
f
)))
-
lgamma
(
1.0
-
arg
)));
}
return
expr
(
static_cast
<
float
>
(
lgamma
(
static_cast
<
double
>
(
arg
))));
#endif
}
/// Gamma implementation.
/// \param arg function argument
/// \return function value stored in single-preicision
static
expr
tgamma
(
float
arg
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
tgamma
(
arg
));
#else
if
(
arg
==
0.0
f
)
return
builtin_signbit
(
arg
)
?
expr
(
-
std
::
numeric_limits
<
float
>::
infinity
())
:
expr
(
std
::
numeric_limits
<
float
>::
infinity
());
if
(
arg
<
0.0
f
)
{
float
i
,
f
=
std
::
modf
(
-
arg
,
&
i
);
if
(
f
==
0.0
f
)
return
expr
(
std
::
numeric_limits
<
float
>::
quiet_NaN
());
double
value
=
3.1415926535897932384626433832795
/
(
std
::
sin
(
3.1415926535897932384626433832795
*
f
)
*
std
::
exp
(
lgamma
(
1.0
-
arg
)));
return
expr
(
static_cast
<
float
>
((
std
::
fmod
(
i
,
2.0
f
)
==
0.0
f
)
?
-
value
:
value
));
}
if
(
builtin_isinf
(
arg
))
return
expr
(
arg
);
return
expr
(
static_cast
<
float
>
(
std
::
exp
(
lgamma
(
static_cast
<
double
>
(
arg
)))));
#endif
}
/// Floor implementation.
/// \param arg value to round
/// \return rounded value
static
half
floor
(
half
arg
)
{
return
half
(
binary
,
round_half
<
std
::
round_toward_neg_infinity
>
(
arg
.
data_
));
}
/// Ceiling implementation.
/// \param arg value to round
/// \return rounded value
static
half
ceil
(
half
arg
)
{
return
half
(
binary
,
round_half
<
std
::
round_toward_infinity
>
(
arg
.
data_
));
}
/// Truncation implementation.
/// \param arg value to round
/// \return rounded value
static
half
trunc
(
half
arg
)
{
return
half
(
binary
,
round_half
<
std
::
round_toward_zero
>
(
arg
.
data_
));
}
/// Nearest integer implementation.
/// \param arg value to round
/// \return rounded value
static
half
round
(
half
arg
)
{
return
half
(
binary
,
round_half_up
(
arg
.
data_
));
}
/// Nearest integer implementation.
/// \param arg value to round
/// \return rounded value
static
long
lround
(
half
arg
)
{
return
detail
::
half2int_up
<
long
>
(
arg
.
data_
);
}
/// Nearest integer implementation.
/// \param arg value to round
/// \return rounded value
static
half
rint
(
half
arg
)
{
return
half
(
binary
,
round_half
<
half
::
round_style
>
(
arg
.
data_
));
}
/// Nearest integer implementation.
/// \param arg value to round
/// \return rounded value
static
long
lrint
(
half
arg
)
{
return
detail
::
half2int
<
half
::
round_style
,
long
>
(
arg
.
data_
);
}
#if HALF_ENABLE_CPP11_LONG_LONG
/// Nearest integer implementation.
/// \param arg value to round
/// \return rounded value
static
long
long
llround
(
half
arg
)
{
return
detail
::
half2int_up
<
long
long
>
(
arg
.
data_
);
}
/// Nearest integer implementation.
/// \param arg value to round
/// \return rounded value
static
long
long
llrint
(
half
arg
)
{
return
detail
::
half2int
<
half
::
round_style
,
long
long
>
(
arg
.
data_
);
}
#endif
/// Decompression implementation.
/// \param arg number to decompress
/// \param exp address to store exponent at
/// \return normalized significant
static
half
frexp
(
half
arg
,
int
*
exp
)
{
int
m
=
arg
.
data_
&
0x7FFF
,
e
=
-
14
;
if
(
m
>=
0x7C00
||
!
m
)
return
*
exp
=
0
,
arg
;
for
(;
m
<
0x400
;
m
<<=
1
,
--
e
)
;
return
*
exp
=
e
+
(
m
>>
10
),
half
(
binary
,
(
arg
.
data_
&
0x8000
)
|
0x3800
|
(
m
&
0x3FF
));
}
/// Decompression implementation.
/// \param arg number to decompress
/// \param iptr address to store integer part at
/// \return fractional part
static
half
modf
(
half
arg
,
half
*
iptr
)
{
unsigned
int
e
=
arg
.
data_
&
0x7FFF
;
if
(
e
>=
0x6400
)
return
*
iptr
=
arg
,
half
(
binary
,
arg
.
data_
&
(
0x8000U
|-
(
e
>
0x7C00
)));
if
(
e
<
0x3C00
)
return
iptr
->
data_
=
arg
.
data_
&
0x8000
,
arg
;
e
>>=
10
;
unsigned
int
mask
=
(
1
<<
(
25
-
e
))
-
1
,
m
=
arg
.
data_
&
mask
;
iptr
->
data_
=
arg
.
data_
&
~
mask
;
if
(
!
m
)
return
half
(
binary
,
arg
.
data_
&
0x8000
);
for
(;
m
<
0x400
;
m
<<=
1
,
--
e
)
;
return
half
(
binary
,
static_cast
<
uint16
>
((
arg
.
data_
&
0x8000
)
|
(
e
<<
10
)
|
(
m
&
0x3FF
)));
}
/// Scaling implementation.
/// \param arg number to scale
/// \param exp power of two to scale by
/// \return scaled number
static
half
scalbln
(
half
arg
,
long
exp
)
{
unsigned
int
m
=
arg
.
data_
&
0x7FFF
;
if
(
m
>=
0x7C00
||
!
m
)
return
arg
;
for
(;
m
<
0x400
;
m
<<=
1
,
--
exp
)
;
exp
+=
m
>>
10
;
uint16
value
=
arg
.
data_
&
0x8000
;
if
(
exp
>
30
)
{
if
(
half
::
round_style
==
std
::
round_toward_zero
)
value
|=
0x7BFF
;
else
if
(
half
::
round_style
==
std
::
round_toward_infinity
)
value
|=
0x7C00
-
(
value
>>
15
);
else
if
(
half
::
round_style
==
std
::
round_toward_neg_infinity
)
value
|=
0x7BFF
+
(
value
>>
15
);
else
value
|=
0x7C00
;
}
else
if
(
exp
>
0
)
value
|=
(
exp
<<
10
)
|
(
m
&
0x3FF
);
else
if
(
exp
>
-
11
)
{
m
=
(
m
&
0x3FF
)
|
0x400
;
if
(
half
::
round_style
==
std
::
round_to_nearest
)
{
m
+=
1
<<
-
exp
;
#if HALF_ROUND_TIES_TO_EVEN
m
-=
(
m
>>
(
1
-
exp
))
&
1
;
#endif
}
else
if
(
half
::
round_style
==
std
::
round_toward_infinity
)
m
+=
((
value
>>
15
)
-
1
)
&
((
1
<<
(
1
-
exp
))
-
1U
);
else
if
(
half
::
round_style
==
std
::
round_toward_neg_infinity
)
m
+=
-
(
value
>>
15
)
&
((
1
<<
(
1
-
exp
))
-
1U
);
value
|=
m
>>
(
1
-
exp
);
}
else
if
(
half
::
round_style
==
std
::
round_toward_infinity
)
value
-=
(
value
>>
15
)
-
1
;
else
if
(
half
::
round_style
==
std
::
round_toward_neg_infinity
)
value
+=
value
>>
15
;
return
half
(
binary
,
value
);
}
/// Exponent implementation.
/// \param arg number to query
/// \return floating point exponent
static
int
ilogb
(
half
arg
)
{
int
abs
=
arg
.
data_
&
0x7FFF
;
if
(
!
abs
)
return
FP_ILOGB0
;
if
(
abs
<
0x7C00
)
{
int
exp
=
(
abs
>>
10
)
-
15
;
if
(
abs
<
0x400
)
for
(;
abs
<
0x200
;
abs
<<=
1
,
--
exp
)
;
return
exp
;
}
if
(
abs
>
0x7C00
)
return
FP_ILOGBNAN
;
return
INT_MAX
;
}
/// Exponent implementation.
/// \param arg number to query
/// \return floating point exponent
static
half
logb
(
half
arg
)
{
int
abs
=
arg
.
data_
&
0x7FFF
;
if
(
!
abs
)
return
half
(
binary
,
0xFC00
);
if
(
abs
<
0x7C00
)
{
int
exp
=
(
abs
>>
10
)
-
15
;
if
(
abs
<
0x400
)
for
(;
abs
<
0x200
;
abs
<<=
1
,
--
exp
)
;
uint16
bits
=
(
exp
<
0
)
<<
15
;
if
(
exp
)
{
unsigned
int
m
=
std
::
abs
(
exp
)
<<
6
,
e
=
18
;
for
(;
m
<
0x400
;
m
<<=
1
,
--
e
)
;
bits
|=
(
e
<<
10
)
+
m
;
}
return
half
(
binary
,
bits
);
}
if
(
abs
>
0x7C00
)
return
arg
;
return
half
(
binary
,
0x7C00
);
}
/// Enumeration implementation.
/// \param from number to increase/decrease
/// \param to direction to enumerate into
/// \return next representable number
static
half
nextafter
(
half
from
,
half
to
)
{
uint16
fabs
=
from
.
data_
&
0x7FFF
,
tabs
=
to
.
data_
&
0x7FFF
;
if
(
fabs
>
0x7C00
)
return
from
;
if
(
tabs
>
0x7C00
||
from
.
data_
==
to
.
data_
||
!
(
fabs
|
tabs
))
return
to
;
if
(
!
fabs
)
return
half
(
binary
,
(
to
.
data_
&
0x8000
)
+
1
);
bool
lt
=
((
fabs
==
from
.
data_
)
?
static_cast
<
int
>
(
fabs
)
:
-
static_cast
<
int
>
(
fabs
))
<
((
tabs
==
to
.
data_
)
?
static_cast
<
int
>
(
tabs
)
:
-
static_cast
<
int
>
(
tabs
));
return
half
(
binary
,
from
.
data_
+
(((
from
.
data_
>>
15
)
^
static_cast
<
unsigned
>
(
lt
))
<<
1
)
-
1
);
}
/// Enumeration implementation.
/// \param from number to increase/decrease
/// \param to direction to enumerate into
/// \return next representable number
static
half
nexttoward
(
half
from
,
long
double
to
)
{
if
(
isnan
(
from
))
return
from
;
long
double
lfrom
=
static_cast
<
long
double
>
(
from
);
if
(
builtin_isnan
(
to
)
||
lfrom
==
to
)
return
half
(
static_cast
<
float
>
(
to
));
if
(
!
(
from
.
data_
&
0x7FFF
))
return
half
(
binary
,
(
static_cast
<
detail
::
uint16
>
(
builtin_signbit
(
to
))
<<
15
)
+
1
);
return
half
(
binary
,
from
.
data_
+
(((
from
.
data_
>>
15
)
^
static_cast
<
unsigned
>
(
lfrom
<
to
))
<<
1
)
-
1
);
}
/// Sign implementation
/// \param x first operand
/// \param y second operand
/// \return composed value
static
half
copysign
(
half
x
,
half
y
)
{
return
half
(
binary
,
x
.
data_
^
((
x
.
data_
^
y
.
data_
)
&
0x8000
));
}
/// Classification implementation.
/// \param arg value to classify
/// \retval true if infinite number
/// \retval false else
static
int
fpclassify
(
half
arg
)
{
unsigned
int
abs
=
arg
.
data_
&
0x7FFF
;
return
abs
?
((
abs
>
0x3FF
)
?
((
abs
>=
0x7C00
)
?
((
abs
>
0x7C00
)
?
FP_NAN
:
FP_INFINITE
)
:
FP_NORMAL
)
:
FP_SUBNORMAL
)
:
FP_ZERO
;
}
/// Classification implementation.
/// \param arg value to classify
/// \retval true if finite number
/// \retval false else
static
bool
isfinite
(
half
arg
)
{
return
(
arg
.
data_
&
0x7C00
)
!=
0x7C00
;
}
/// Classification implementation.
/// \param arg value to classify
/// \retval true if infinite number
/// \retval false else
static
bool
isinf
(
half
arg
)
{
return
(
arg
.
data_
&
0x7FFF
)
==
0x7C00
;
}
/// Classification implementation.
/// \param arg value to classify
/// \retval true if not a number
/// \retval false else
static
bool
isnan
(
half
arg
)
{
return
(
arg
.
data_
&
0x7FFF
)
>
0x7C00
;
}
/// Classification implementation.
/// \param arg value to classify
/// \retval true if normal number
/// \retval false else
static
bool
isnormal
(
half
arg
)
{
return
((
arg
.
data_
&
0x7C00
)
!=
0
)
&
((
arg
.
data_
&
0x7C00
)
!=
0x7C00
);
}
/// Sign bit implementation.
/// \param arg value to check
/// \retval true if signed
/// \retval false if unsigned
static
bool
signbit
(
half
arg
)
{
return
(
arg
.
data_
&
0x8000
)
!=
0
;
}
/// Comparison implementation.
/// \param x first operand
/// \param y second operand
/// \retval true if operands equal
/// \retval false else
static
bool
isequal
(
half
x
,
half
y
)
{
return
(
x
.
data_
==
y
.
data_
||
!
((
x
.
data_
|
y
.
data_
)
&
0x7FFF
))
&&
!
isnan
(
x
);
}
/// Comparison implementation.
/// \param x first operand
/// \param y second operand
/// \retval true if operands not equal
/// \retval false else
static
bool
isnotequal
(
half
x
,
half
y
)
{
return
(
x
.
data_
!=
y
.
data_
&&
((
x
.
data_
|
y
.
data_
)
&
0x7FFF
))
||
isnan
(
x
);
}
/// Comparison implementation.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x > \a y
/// \retval false else
static
bool
isgreater
(
half
x
,
half
y
)
{
int
xabs
=
x
.
data_
&
0x7FFF
,
yabs
=
y
.
data_
&
0x7FFF
;
return
xabs
<=
0x7C00
&&
yabs
<=
0x7C00
&&
(((
xabs
==
x
.
data_
)
?
xabs
:
-
xabs
)
>
((
yabs
==
y
.
data_
)
?
yabs
:
-
yabs
));
}
/// Comparison implementation.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x >= \a y
/// \retval false else
static
bool
isgreaterequal
(
half
x
,
half
y
)
{
int
xabs
=
x
.
data_
&
0x7FFF
,
yabs
=
y
.
data_
&
0x7FFF
;
return
xabs
<=
0x7C00
&&
yabs
<=
0x7C00
&&
(((
xabs
==
x
.
data_
)
?
xabs
:
-
xabs
)
>=
((
yabs
==
y
.
data_
)
?
yabs
:
-
yabs
));
}
/// Comparison implementation.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x < \a y
/// \retval false else
static
bool
isless
(
half
x
,
half
y
)
{
int
xabs
=
x
.
data_
&
0x7FFF
,
yabs
=
y
.
data_
&
0x7FFF
;
return
xabs
<=
0x7C00
&&
yabs
<=
0x7C00
&&
(((
xabs
==
x
.
data_
)
?
xabs
:
-
xabs
)
<
((
yabs
==
y
.
data_
)
?
yabs
:
-
yabs
));
}
/// Comparison implementation.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x <= \a y
/// \retval false else
static
bool
islessequal
(
half
x
,
half
y
)
{
int
xabs
=
x
.
data_
&
0x7FFF
,
yabs
=
y
.
data_
&
0x7FFF
;
return
xabs
<=
0x7C00
&&
yabs
<=
0x7C00
&&
(((
xabs
==
x
.
data_
)
?
xabs
:
-
xabs
)
<=
((
yabs
==
y
.
data_
)
?
yabs
:
-
yabs
));
}
/// Comparison implementation.
/// \param x first operand
/// \param y second operand
/// \retval true if either \a x > \a y nor \a x < \a y
/// \retval false else
static
bool
islessgreater
(
half
x
,
half
y
)
{
int
xabs
=
x
.
data_
&
0x7FFF
,
yabs
=
y
.
data_
&
0x7FFF
;
if
(
xabs
>
0x7C00
||
yabs
>
0x7C00
)
return
false
;
int
a
=
(
xabs
==
x
.
data_
)
?
xabs
:
-
xabs
,
b
=
(
yabs
==
y
.
data_
)
?
yabs
:
-
yabs
;
return
a
<
b
||
a
>
b
;
}
/// Comparison implementation.
/// \param x first operand
/// \param y second operand
/// \retval true if operand unordered
/// \retval false else
static
bool
isunordered
(
half
x
,
half
y
)
{
return
isnan
(
x
)
||
isnan
(
y
);
}
private:
static
double
erf
(
double
arg
)
{
if
(
builtin_isinf
(
arg
))
return
(
arg
<
0.0
)
?
-
1.0
:
1.0
;
double
x2
=
arg
*
arg
,
ax2
=
0.147
*
x2
,
value
=
std
::
sqrt
(
1.0
-
std
::
exp
(
-
x2
*
(
1.2732395447351626861510701069801
+
ax2
)
/
(
1.0
+
ax2
)));
return
builtin_signbit
(
arg
)
?
-
value
:
value
;
}
static
double
lgamma
(
double
arg
)
{
double
v
=
1.0
;
for
(;
arg
<
8.0
;
++
arg
)
v
*=
arg
;
double
w
=
1.0
/
(
arg
*
arg
);
return
(((((((
-
0.02955065359477124183006535947712
*
w
+
0.00641025641025641025641025641026
)
*
w
+
-
0.00191752691752691752691752691753
)
*
w
+
8.4175084175084175084175084175084e-4
)
*
w
+
-
5.952380952380952380952380952381e-4
)
*
w
+
7.9365079365079365079365079365079e-4
)
*
w
+
-
0.00277777777777777777777777777778
)
*
w
+
0.08333333333333333333333333333333
)
/
arg
+
0.91893853320467274178032973640562
-
std
::
log
(
v
)
-
arg
+
(
arg
-
0.5
)
*
std
::
log
(
arg
);
}
};
/// Wrapper for unary half-precision functions needing specialization for individual argument types.
/// \tparam T argument type
template
<
typename
T
>
struct
unary_specialized
{
/// Negation implementation.
/// \param arg value to negate
/// \return negated value
static
HALF_CONSTEXPR
half
negate
(
half
arg
)
{
return
half
(
binary
,
arg
.
data_
^
0x8000
);
}
/// Absolute value implementation.
/// \param arg function argument
/// \return absolute value
static
half
fabs
(
half
arg
)
{
return
half
(
binary
,
arg
.
data_
&
0x7FFF
);
}
};
template
<
>
struct
unary_specialized
<
expr
>
{
static
HALF_CONSTEXPR
expr
negate
(
float
arg
)
{
return
expr
(
-
arg
);
}
static
expr
fabs
(
float
arg
)
{
return
expr
(
std
::
fabs
(
arg
));
}
};
/// Wrapper for binary half-precision functions needing specialization for individual argument types.
/// \tparam T first argument type
/// \tparam U first argument type
template
<
typename
T
,
typename
U
>
struct
binary_specialized
{
/// Minimum implementation.
/// \param x first operand
/// \param y second operand
/// \return minimum value
static
expr
fmin
(
float
x
,
float
y
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
fmin
(
x
,
y
));
#else
if
(
builtin_isnan
(
x
))
return
expr
(
y
);
if
(
builtin_isnan
(
y
))
return
expr
(
x
);
return
expr
(
std
::
min
(
x
,
y
));
#endif
}
/// Maximum implementation.
/// \param x first operand
/// \param y second operand
/// \return maximum value
static
expr
fmax
(
float
x
,
float
y
)
{
#if HALF_ENABLE_CPP11_CMATH
return
expr
(
std
::
fmax
(
x
,
y
));
#else
if
(
builtin_isnan
(
x
))
return
expr
(
y
);
if
(
builtin_isnan
(
y
))
return
expr
(
x
);
return
expr
(
std
::
max
(
x
,
y
));
#endif
}
};
template
<
>
struct
binary_specialized
<
half
,
half
>
{
static
half
fmin
(
half
x
,
half
y
)
{
int
xabs
=
x
.
data_
&
0x7FFF
,
yabs
=
y
.
data_
&
0x7FFF
;
if
(
xabs
>
0x7C00
)
return
y
;
if
(
yabs
>
0x7C00
)
return
x
;
return
(((
xabs
==
x
.
data_
)
?
xabs
:
-
xabs
)
>
((
yabs
==
y
.
data_
)
?
yabs
:
-
yabs
))
?
y
:
x
;
}
static
half
fmax
(
half
x
,
half
y
)
{
int
xabs
=
x
.
data_
&
0x7FFF
,
yabs
=
y
.
data_
&
0x7FFF
;
if
(
xabs
>
0x7C00
)
return
y
;
if
(
yabs
>
0x7C00
)
return
x
;
return
(((
xabs
==
x
.
data_
)
?
xabs
:
-
xabs
)
<
((
yabs
==
y
.
data_
)
?
yabs
:
-
yabs
))
?
y
:
x
;
}
};
/// Helper class for half casts.
/// This class template has to be specialized for all valid cast argument to define an appropriate static `cast` member
/// function and a corresponding `type` member denoting its return type.
/// \tparam T destination type
/// \tparam U source type
/// \tparam R rounding mode to use
template
<
typename
T
,
typename
U
,
std
::
float_round_style
R
=
(
std
::
float_round_style
)(
HALF_ROUND_STYLE
)>
struct
half_caster
{};
template
<
typename
U
,
std
::
float_round_style
R
>
struct
half_caster
<
half
,
U
,
R
>
{
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
static_assert
(
std
::
is_arithmetic
<
U
>::
value
,
"half_cast from non-arithmetic type unsupported"
);
#endif
static
half
cast
(
U
arg
)
{
return
cast_impl
(
arg
,
is_float
<
U
>
());
};
private:
static
half
cast_impl
(
U
arg
,
true_type
)
{
return
half
(
binary
,
float2half
<
R
>
(
arg
));
}
static
half
cast_impl
(
U
arg
,
false_type
)
{
return
half
(
binary
,
int2half
<
R
>
(
arg
));
}
};
template
<
typename
T
,
std
::
float_round_style
R
>
struct
half_caster
<
T
,
half
,
R
>
{
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
static_assert
(
std
::
is_arithmetic
<
T
>::
value
,
"half_cast to non-arithmetic type unsupported"
);
#endif
static
T
cast
(
half
arg
)
{
return
cast_impl
(
arg
,
is_float
<
T
>
());
}
private:
static
T
cast_impl
(
half
arg
,
true_type
)
{
return
half2float
<
T
>
(
arg
.
data_
);
}
static
T
cast_impl
(
half
arg
,
false_type
)
{
return
half2int
<
R
,
T
>
(
arg
.
data_
);
}
};
template
<
typename
T
,
std
::
float_round_style
R
>
struct
half_caster
<
T
,
expr
,
R
>
{
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
static_assert
(
std
::
is_arithmetic
<
T
>::
value
,
"half_cast to non-arithmetic type unsupported"
);
#endif
static
T
cast
(
expr
arg
)
{
return
cast_impl
(
arg
,
is_float
<
T
>
());
}
private:
static
T
cast_impl
(
float
arg
,
true_type
)
{
return
static_cast
<
T
>
(
arg
);
}
static
T
cast_impl
(
half
arg
,
false_type
)
{
return
half2int
<
R
,
T
>
(
arg
.
data_
);
}
};
template
<
std
::
float_round_style
R
>
struct
half_caster
<
half
,
half
,
R
>
{
static
half
cast
(
half
arg
)
{
return
arg
;
}
};
template
<
std
::
float_round_style
R
>
struct
half_caster
<
half
,
expr
,
R
>
:
half_caster
<
half
,
half
,
R
>
{};
/// \name Comparison operators
/// \{
/// Comparison for equality.
/// \param x first operand
/// \param y second operand
/// \retval true if operands equal
/// \retval false else
template
<
typename
T
,
typename
U
>
typename
enable
<
bool
,
T
,
U
>::
type
operator
==
(
T
x
,
U
y
)
{
return
functions
::
isequal
(
x
,
y
);
}
/// Comparison for inequality.
/// \param x first operand
/// \param y second operand
/// \retval true if operands not equal
/// \retval false else
template
<
typename
T
,
typename
U
>
typename
enable
<
bool
,
T
,
U
>::
type
operator
!=
(
T
x
,
U
y
)
{
return
functions
::
isnotequal
(
x
,
y
);
}
/// Comparison for less than.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x less than \a y
/// \retval false else
template
<
typename
T
,
typename
U
>
typename
enable
<
bool
,
T
,
U
>::
type
operator
<
(
T
x
,
U
y
)
{
return
functions
::
isless
(
x
,
y
);
}
/// Comparison for greater than.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x greater than \a y
/// \retval false else
template
<
typename
T
,
typename
U
>
typename
enable
<
bool
,
T
,
U
>::
type
operator
>
(
T
x
,
U
y
)
{
return
functions
::
isgreater
(
x
,
y
);
}
/// Comparison for less equal.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x less equal \a y
/// \retval false else
template
<
typename
T
,
typename
U
>
typename
enable
<
bool
,
T
,
U
>::
type
operator
<=
(
T
x
,
U
y
)
{
return
functions
::
islessequal
(
x
,
y
);
}
/// Comparison for greater equal.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x greater equal \a y
/// \retval false else
template
<
typename
T
,
typename
U
>
typename
enable
<
bool
,
T
,
U
>::
type
operator
>=
(
T
x
,
U
y
)
{
return
functions
::
isgreaterequal
(
x
,
y
);
}
/// \}
/// \name Arithmetic operators
/// \{
/// Add halfs.
/// \param x left operand
/// \param y right operand
/// \return sum of half expressions
template
<
typename
T
,
typename
U
>
typename
enable
<
expr
,
T
,
U
>::
type
operator
+
(
T
x
,
U
y
)
{
return
functions
::
plus
(
x
,
y
);
}
/// Subtract halfs.
/// \param x left operand
/// \param y right operand
/// \return difference of half expressions
template
<
typename
T
,
typename
U
>
typename
enable
<
expr
,
T
,
U
>::
type
operator
-
(
T
x
,
U
y
)
{
return
functions
::
minus
(
x
,
y
);
}
/// Multiply halfs.
/// \param x left operand
/// \param y right operand
/// \return product of half expressions
template
<
typename
T
,
typename
U
>
typename
enable
<
expr
,
T
,
U
>::
type
operator
*
(
T
x
,
U
y
)
{
return
functions
::
multiplies
(
x
,
y
);
}
/// Divide halfs.
/// \param x left operand
/// \param y right operand
/// \return quotient of half expressions
template
<
typename
T
,
typename
U
>
typename
enable
<
expr
,
T
,
U
>::
type
operator
/
(
T
x
,
U
y
)
{
return
functions
::
divides
(
x
,
y
);
}
/// Identity.
/// \param arg operand
/// \return uncahnged operand
template
<
typename
T
>
HALF_CONSTEXPR
typename
enable
<
T
,
T
>::
type
operator
+
(
T
arg
)
{
return
arg
;
}
/// Negation.
/// \param arg operand
/// \return negated operand
template
<
typename
T
>
HALF_CONSTEXPR
typename
enable
<
T
,
T
>::
type
operator
-
(
T
arg
)
{
return
unary_specialized
<
T
>::
negate
(
arg
);
}
/// \}
/// \name Input and output
/// \{
/// Output operator.
/// \param out output stream to write into
/// \param arg half expression to write
/// \return reference to output stream
template
<
typename
T
,
typename
charT
,
typename
traits
>
typename
enable
<
std
::
basic_ostream
<
charT
,
traits
>&
,
T
>::
type
operator
<<
(
std
::
basic_ostream
<
charT
,
traits
>
&
out
,
T
arg
)
{
return
functions
::
write
(
out
,
arg
);
}
/// Input operator.
/// \param in input stream to read from
/// \param arg half to read into
/// \return reference to input stream
template
<
typename
charT
,
typename
traits
>
std
::
basic_istream
<
charT
,
traits
>&
operator
>>
(
std
::
basic_istream
<
charT
,
traits
>
&
in
,
half
&
arg
)
{
return
functions
::
read
(
in
,
arg
);
}
/// \}
/// \name Basic mathematical operations
/// \{
/// Absolute value.
/// \param arg operand
/// \return absolute value of \a arg
// template<typename T> typename enable<T,T>::type abs(T arg) { return unary_specialized<T>::fabs(arg); }
inline
half
abs
(
half
arg
)
{
return
unary_specialized
<
half
>::
fabs
(
arg
);
}
inline
expr
abs
(
expr
arg
)
{
return
unary_specialized
<
expr
>::
fabs
(
arg
);
}
/// Absolute value.
/// \param arg operand
/// \return absolute value of \a arg
// template<typename T> typename enable<T,T>::type fabs(T arg) { return unary_specialized<T>::fabs(arg); }
inline
half
fabs
(
half
arg
)
{
return
unary_specialized
<
half
>::
fabs
(
arg
);
}
inline
expr
fabs
(
expr
arg
)
{
return
unary_specialized
<
expr
>::
fabs
(
arg
);
}
/// Remainder of division.
/// \param x first operand
/// \param y second operand
/// \return remainder of floating point division.
// template<typename T,typename U> typename enable<expr,T,U>::type fmod(T x, U y) { return functions::fmod(x, y); }
inline
expr
fmod
(
half
x
,
half
y
)
{
return
functions
::
fmod
(
x
,
y
);
}
inline
expr
fmod
(
half
x
,
expr
y
)
{
return
functions
::
fmod
(
x
,
y
);
}
inline
expr
fmod
(
expr
x
,
half
y
)
{
return
functions
::
fmod
(
x
,
y
);
}
inline
expr
fmod
(
expr
x
,
expr
y
)
{
return
functions
::
fmod
(
x
,
y
);
}
/// Remainder of division.
/// \param x first operand
/// \param y second operand
/// \return remainder of floating point division.
// template<typename T,typename U> typename enable<expr,T,U>::type remainder(T x, U y) { return functions::remainder(x, y); }
inline
expr
remainder
(
half
x
,
half
y
)
{
return
functions
::
remainder
(
x
,
y
);
}
inline
expr
remainder
(
half
x
,
expr
y
)
{
return
functions
::
remainder
(
x
,
y
);
}
inline
expr
remainder
(
expr
x
,
half
y
)
{
return
functions
::
remainder
(
x
,
y
);
}
inline
expr
remainder
(
expr
x
,
expr
y
)
{
return
functions
::
remainder
(
x
,
y
);
}
/// Remainder of division.
/// \param x first operand
/// \param y second operand
/// \param quo address to store some bits of quotient at
/// \return remainder of floating point division.
// template<typename T,typename U> typename enable<expr,T,U>::type remquo(T x, U y, int *quo) { return functions::remquo(x, y, quo); }
inline
expr
remquo
(
half
x
,
half
y
,
int
*
quo
)
{
return
functions
::
remquo
(
x
,
y
,
quo
);
}
inline
expr
remquo
(
half
x
,
expr
y
,
int
*
quo
)
{
return
functions
::
remquo
(
x
,
y
,
quo
);
}
inline
expr
remquo
(
expr
x
,
half
y
,
int
*
quo
)
{
return
functions
::
remquo
(
x
,
y
,
quo
);
}
inline
expr
remquo
(
expr
x
,
expr
y
,
int
*
quo
)
{
return
functions
::
remquo
(
x
,
y
,
quo
);
}
/// Fused multiply add.
/// \param x first operand
/// \param y second operand
/// \param z third operand
/// \return ( \a x * \a y ) + \a z rounded as one operation.
// template<typename T,typename U,typename V> typename enable<expr,T,U,V>::type fma(T x, U y, V z) { return functions::fma(x, y, z); }
inline
expr
fma
(
half
x
,
half
y
,
half
z
)
{
return
functions
::
fma
(
x
,
y
,
z
);
}
inline
expr
fma
(
half
x
,
half
y
,
expr
z
)
{
return
functions
::
fma
(
x
,
y
,
z
);
}
inline
expr
fma
(
half
x
,
expr
y
,
half
z
)
{
return
functions
::
fma
(
x
,
y
,
z
);
}
inline
expr
fma
(
half
x
,
expr
y
,
expr
z
)
{
return
functions
::
fma
(
x
,
y
,
z
);
}
inline
expr
fma
(
expr
x
,
half
y
,
half
z
)
{
return
functions
::
fma
(
x
,
y
,
z
);
}
inline
expr
fma
(
expr
x
,
half
y
,
expr
z
)
{
return
functions
::
fma
(
x
,
y
,
z
);
}
inline
expr
fma
(
expr
x
,
expr
y
,
half
z
)
{
return
functions
::
fma
(
x
,
y
,
z
);
}
inline
expr
fma
(
expr
x
,
expr
y
,
expr
z
)
{
return
functions
::
fma
(
x
,
y
,
z
);
}
/// Maximum of half expressions.
/// \param x first operand
/// \param y second operand
/// \return maximum of operands
// template<typename T,typename U> typename result<T,U>::type fmax(T x, U y) { return binary_specialized<T,U>::fmax(x, y); }
inline
half
fmax
(
half
x
,
half
y
)
{
return
binary_specialized
<
half
,
half
>::
fmax
(
x
,
y
);
}
inline
expr
fmax
(
half
x
,
expr
y
)
{
return
binary_specialized
<
half
,
expr
>::
fmax
(
x
,
y
);
}
inline
expr
fmax
(
expr
x
,
half
y
)
{
return
binary_specialized
<
expr
,
half
>::
fmax
(
x
,
y
);
}
inline
expr
fmax
(
expr
x
,
expr
y
)
{
return
binary_specialized
<
expr
,
expr
>::
fmax
(
x
,
y
);
}
/// Minimum of half expressions.
/// \param x first operand
/// \param y second operand
/// \return minimum of operands
// template<typename T,typename U> typename result<T,U>::type fmin(T x, U y) { return binary_specialized<T,U>::fmin(x, y); }
inline
half
fmin
(
half
x
,
half
y
)
{
return
binary_specialized
<
half
,
half
>::
fmin
(
x
,
y
);
}
inline
expr
fmin
(
half
x
,
expr
y
)
{
return
binary_specialized
<
half
,
expr
>::
fmin
(
x
,
y
);
}
inline
expr
fmin
(
expr
x
,
half
y
)
{
return
binary_specialized
<
expr
,
half
>::
fmin
(
x
,
y
);
}
inline
expr
fmin
(
expr
x
,
expr
y
)
{
return
binary_specialized
<
expr
,
expr
>::
fmin
(
x
,
y
);
}
/// Positive difference.
/// \param x first operand
/// \param y second operand
/// \return \a x - \a y or 0 if difference negative
// template<typename T,typename U> typename enable<expr,T,U>::type fdim(T x, U y) { return functions::fdim(x, y); }
inline
expr
fdim
(
half
x
,
half
y
)
{
return
functions
::
fdim
(
x
,
y
);
}
inline
expr
fdim
(
half
x
,
expr
y
)
{
return
functions
::
fdim
(
x
,
y
);
}
inline
expr
fdim
(
expr
x
,
half
y
)
{
return
functions
::
fdim
(
x
,
y
);
}
inline
expr
fdim
(
expr
x
,
expr
y
)
{
return
functions
::
fdim
(
x
,
y
);
}
/// Get NaN value.
/// \return quiet NaN
inline
half
nanh
(
const
char
*
)
{
return
functions
::
nanh
();
}
/// \}
/// \name Exponential functions
/// \{
/// Exponential function.
/// \param arg function argument
/// \return e raised to \a arg
// template<typename T> typename enable<expr,T>::type exp(T arg) { return functions::exp(arg); }
inline
expr
exp
(
half
arg
)
{
return
functions
::
exp
(
arg
);
}
inline
expr
exp
(
expr
arg
)
{
return
functions
::
exp
(
arg
);
}
/// Exponential minus one.
/// \param arg function argument
/// \return e raised to \a arg subtracted by 1
// template<typename T> typename enable<expr,T>::type expm1(T arg) { return functions::expm1(arg); }
inline
expr
expm1
(
half
arg
)
{
return
functions
::
expm1
(
arg
);
}
inline
expr
expm1
(
expr
arg
)
{
return
functions
::
expm1
(
arg
);
}
/// Binary exponential.
/// \param arg function argument
/// \return 2 raised to \a arg
// template<typename T> typename enable<expr,T>::type exp2(T arg) { return functions::exp2(arg); }
inline
expr
exp2
(
half
arg
)
{
return
functions
::
exp2
(
arg
);
}
inline
expr
exp2
(
expr
arg
)
{
return
functions
::
exp2
(
arg
);
}
/// Natural logorithm.
/// \param arg function argument
/// \return logarithm of \a arg to base e
// template<typename T> typename enable<expr,T>::type log(T arg) { return functions::log(arg); }
inline
expr
log
(
half
arg
)
{
return
functions
::
log
(
arg
);
}
inline
expr
log
(
expr
arg
)
{
return
functions
::
log
(
arg
);
}
/// Common logorithm.
/// \param arg function argument
/// \return logarithm of \a arg to base 10
// template<typename T> typename enable<expr,T>::type log10(T arg) { return functions::log10(arg); }
inline
expr
log10
(
half
arg
)
{
return
functions
::
log10
(
arg
);
}
inline
expr
log10
(
expr
arg
)
{
return
functions
::
log10
(
arg
);
}
/// Natural logorithm.
/// \param arg function argument
/// \return logarithm of \a arg plus 1 to base e
// template<typename T> typename enable<expr,T>::type log1p(T arg) { return functions::log1p(arg); }
inline
expr
log1p
(
half
arg
)
{
return
functions
::
log1p
(
arg
);
}
inline
expr
log1p
(
expr
arg
)
{
return
functions
::
log1p
(
arg
);
}
/// Binary logorithm.
/// \param arg function argument
/// \return logarithm of \a arg to base 2
// template<typename T> typename enable<expr,T>::type log2(T arg) { return functions::log2(arg); }
inline
expr
log2
(
half
arg
)
{
return
functions
::
log2
(
arg
);
}
inline
expr
log2
(
expr
arg
)
{
return
functions
::
log2
(
arg
);
}
/// \}
/// \name Power functions
/// \{
/// Square root.
/// \param arg function argument
/// \return square root of \a arg
// template<typename T> typename enable<expr,T>::type sqrt(T arg) { return functions::sqrt(arg); }
inline
expr
sqrt
(
half
arg
)
{
return
functions
::
sqrt
(
arg
);
}
inline
expr
sqrt
(
expr
arg
)
{
return
functions
::
sqrt
(
arg
);
}
/// Cubic root.
/// \param arg function argument
/// \return cubic root of \a arg
// template<typename T> typename enable<expr,T>::type cbrt(T arg) { return functions::cbrt(arg); }
inline
expr
cbrt
(
half
arg
)
{
return
functions
::
cbrt
(
arg
);
}
inline
expr
cbrt
(
expr
arg
)
{
return
functions
::
cbrt
(
arg
);
}
/// Hypotenuse function.
/// \param x first argument
/// \param y second argument
/// \return square root of sum of squares without internal over- or underflows
// template<typename T,typename U> typename enable<expr,T,U>::type hypot(T x, U y) { return functions::hypot(x, y); }
inline
expr
hypot
(
half
x
,
half
y
)
{
return
functions
::
hypot
(
x
,
y
);
}
inline
expr
hypot
(
half
x
,
expr
y
)
{
return
functions
::
hypot
(
x
,
y
);
}
inline
expr
hypot
(
expr
x
,
half
y
)
{
return
functions
::
hypot
(
x
,
y
);
}
inline
expr
hypot
(
expr
x
,
expr
y
)
{
return
functions
::
hypot
(
x
,
y
);
}
/// Power function.
/// \param base first argument
/// \param exp second argument
/// \return \a base raised to \a exp
// template<typename T,typename U> typename enable<expr,T,U>::type pow(T base, U exp) { return functions::pow(base, exp); }
inline
expr
pow
(
half
base
,
half
exp
)
{
return
functions
::
pow
(
base
,
exp
);
}
inline
expr
pow
(
half
base
,
expr
exp
)
{
return
functions
::
pow
(
base
,
exp
);
}
inline
expr
pow
(
expr
base
,
half
exp
)
{
return
functions
::
pow
(
base
,
exp
);
}
inline
expr
pow
(
expr
base
,
expr
exp
)
{
return
functions
::
pow
(
base
,
exp
);
}
/// \}
/// \name Trigonometric functions
/// \{
/// Sine function.
/// \param arg function argument
/// \return sine value of \a arg
// template<typename T> typename enable<expr,T>::type sin(T arg) { return functions::sin(arg); }
inline
expr
sin
(
half
arg
)
{
return
functions
::
sin
(
arg
);
}
inline
expr
sin
(
expr
arg
)
{
return
functions
::
sin
(
arg
);
}
/// Cosine function.
/// \param arg function argument
/// \return cosine value of \a arg
// template<typename T> typename enable<expr,T>::type cos(T arg) { return functions::cos(arg); }
inline
expr
cos
(
half
arg
)
{
return
functions
::
cos
(
arg
);
}
inline
expr
cos
(
expr
arg
)
{
return
functions
::
cos
(
arg
);
}
/// Tangent function.
/// \param arg function argument
/// \return tangent value of \a arg
// template<typename T> typename enable<expr,T>::type tan(T arg) { return functions::tan(arg); }
inline
expr
tan
(
half
arg
)
{
return
functions
::
tan
(
arg
);
}
inline
expr
tan
(
expr
arg
)
{
return
functions
::
tan
(
arg
);
}
/// Arc sine.
/// \param arg function argument
/// \return arc sine value of \a arg
// template<typename T> typename enable<expr,T>::type asin(T arg) { return functions::asin(arg); }
inline
expr
asin
(
half
arg
)
{
return
functions
::
asin
(
arg
);
}
inline
expr
asin
(
expr
arg
)
{
return
functions
::
asin
(
arg
);
}
/// Arc cosine function.
/// \param arg function argument
/// \return arc cosine value of \a arg
// template<typename T> typename enable<expr,T>::type acos(T arg) { return functions::acos(arg); }
inline
expr
acos
(
half
arg
)
{
return
functions
::
acos
(
arg
);
}
inline
expr
acos
(
expr
arg
)
{
return
functions
::
acos
(
arg
);
}
/// Arc tangent function.
/// \param arg function argument
/// \return arc tangent value of \a arg
// template<typename T> typename enable<expr,T>::type atan(T arg) { return functions::atan(arg); }
inline
expr
atan
(
half
arg
)
{
return
functions
::
atan
(
arg
);
}
inline
expr
atan
(
expr
arg
)
{
return
functions
::
atan
(
arg
);
}
/// Arc tangent function.
/// \param x first argument
/// \param y second argument
/// \return arc tangent value
// template<typename T,typename U> typename enable<expr,T,U>::type atan2(T x, U y) { return functions::atan2(x, y); }
inline
expr
atan2
(
half
x
,
half
y
)
{
return
functions
::
atan2
(
x
,
y
);
}
inline
expr
atan2
(
half
x
,
expr
y
)
{
return
functions
::
atan2
(
x
,
y
);
}
inline
expr
atan2
(
expr
x
,
half
y
)
{
return
functions
::
atan2
(
x
,
y
);
}
inline
expr
atan2
(
expr
x
,
expr
y
)
{
return
functions
::
atan2
(
x
,
y
);
}
/// \}
/// \name Hyperbolic functions
/// \{
/// Hyperbolic sine.
/// \param arg function argument
/// \return hyperbolic sine value of \a arg
// template<typename T> typename enable<expr,T>::type sinh(T arg) { return functions::sinh(arg); }
inline
expr
sinh
(
half
arg
)
{
return
functions
::
sinh
(
arg
);
}
inline
expr
sinh
(
expr
arg
)
{
return
functions
::
sinh
(
arg
);
}
/// Hyperbolic cosine.
/// \param arg function argument
/// \return hyperbolic cosine value of \a arg
// template<typename T> typename enable<expr,T>::type cosh(T arg) { return functions::cosh(arg); }
inline
expr
cosh
(
half
arg
)
{
return
functions
::
cosh
(
arg
);
}
inline
expr
cosh
(
expr
arg
)
{
return
functions
::
cosh
(
arg
);
}
/// Hyperbolic tangent.
/// \param arg function argument
/// \return hyperbolic tangent value of \a arg
// template<typename T> typename enable<expr,T>::type tanh(T arg) { return functions::tanh(arg); }
inline
expr
tanh
(
half
arg
)
{
return
functions
::
tanh
(
arg
);
}
inline
expr
tanh
(
expr
arg
)
{
return
functions
::
tanh
(
arg
);
}
/// Hyperbolic area sine.
/// \param arg function argument
/// \return area sine value of \a arg
// template<typename T> typename enable<expr,T>::type asinh(T arg) { return functions::asinh(arg); }
inline
expr
asinh
(
half
arg
)
{
return
functions
::
asinh
(
arg
);
}
inline
expr
asinh
(
expr
arg
)
{
return
functions
::
asinh
(
arg
);
}
/// Hyperbolic area cosine.
/// \param arg function argument
/// \return area cosine value of \a arg
// template<typename T> typename enable<expr,T>::type acosh(T arg) { return functions::acosh(arg); }
inline
expr
acosh
(
half
arg
)
{
return
functions
::
acosh
(
arg
);
}
inline
expr
acosh
(
expr
arg
)
{
return
functions
::
acosh
(
arg
);
}
/// Hyperbolic area tangent.
/// \param arg function argument
/// \return area tangent value of \a arg
// template<typename T> typename enable<expr,T>::type atanh(T arg) { return functions::atanh(arg); }
inline
expr
atanh
(
half
arg
)
{
return
functions
::
atanh
(
arg
);
}
inline
expr
atanh
(
expr
arg
)
{
return
functions
::
atanh
(
arg
);
}
/// \}
/// \name Error and gamma functions
/// \{
/// Error function.
/// \param arg function argument
/// \return error function value of \a arg
// template<typename T> typename enable<expr,T>::type erf(T arg) { return functions::erf(arg); }
inline
expr
erf
(
half
arg
)
{
return
functions
::
erf
(
arg
);
}
inline
expr
erf
(
expr
arg
)
{
return
functions
::
erf
(
arg
);
}
/// Complementary error function.
/// \param arg function argument
/// \return 1 minus error function value of \a arg
// template<typename T> typename enable<expr,T>::type erfc(T arg) { return functions::erfc(arg); }
inline
expr
erfc
(
half
arg
)
{
return
functions
::
erfc
(
arg
);
}
inline
expr
erfc
(
expr
arg
)
{
return
functions
::
erfc
(
arg
);
}
/// Natural logarithm of gamma function.
/// \param arg function argument
/// \return natural logarith of gamma function for \a arg
// template<typename T> typename enable<expr,T>::type lgamma(T arg) { return functions::lgamma(arg); }
inline
expr
lgamma
(
half
arg
)
{
return
functions
::
lgamma
(
arg
);
}
inline
expr
lgamma
(
expr
arg
)
{
return
functions
::
lgamma
(
arg
);
}
/// Gamma function.
/// \param arg function argument
/// \return gamma function value of \a arg
// template<typename T> typename enable<expr,T>::type tgamma(T arg) { return functions::tgamma(arg); }
inline
expr
tgamma
(
half
arg
)
{
return
functions
::
tgamma
(
arg
);
}
inline
expr
tgamma
(
expr
arg
)
{
return
functions
::
tgamma
(
arg
);
}
/// \}
/// \name Rounding
/// \{
/// Nearest integer not less than half value.
/// \param arg half to round
/// \return nearest integer not less than \a arg
// template<typename T> typename enable<half,T>::type ceil(T arg) { return functions::ceil(arg); }
inline
half
ceil
(
half
arg
)
{
return
functions
::
ceil
(
arg
);
}
inline
half
ceil
(
expr
arg
)
{
return
functions
::
ceil
(
arg
);
}
/// Nearest integer not greater than half value.
/// \param arg half to round
/// \return nearest integer not greater than \a arg
// template<typename T> typename enable<half,T>::type floor(T arg) { return functions::floor(arg); }
inline
half
floor
(
half
arg
)
{
return
functions
::
floor
(
arg
);
}
inline
half
floor
(
expr
arg
)
{
return
functions
::
floor
(
arg
);
}
/// Nearest integer not greater in magnitude than half value.
/// \param arg half to round
/// \return nearest integer not greater in magnitude than \a arg
// template<typename T> typename enable<half,T>::type trunc(T arg) { return functions::trunc(arg); }
inline
half
trunc
(
half
arg
)
{
return
functions
::
trunc
(
arg
);
}
inline
half
trunc
(
expr
arg
)
{
return
functions
::
trunc
(
arg
);
}
/// Nearest integer.
/// \param arg half to round
/// \return nearest integer, rounded away from zero in half-way cases
// template<typename T> typename enable<half,T>::type round(T arg) { return functions::round(arg); }
inline
half
round
(
half
arg
)
{
return
functions
::
round
(
arg
);
}
inline
half
round
(
expr
arg
)
{
return
functions
::
round
(
arg
);
}
/// Nearest integer.
/// \param arg half to round
/// \return nearest integer, rounded away from zero in half-way cases
// template<typename T> typename enable<long,T>::type lround(T arg) { return functions::lround(arg); }
inline
long
lround
(
half
arg
)
{
return
functions
::
lround
(
arg
);
}
inline
long
lround
(
expr
arg
)
{
return
functions
::
lround
(
arg
);
}
/// Nearest integer using half's internal rounding mode.
/// \param arg half expression to round
/// \return nearest integer using default rounding mode
// template<typename T> typename enable<half,T>::type nearbyint(T arg) { return functions::nearbyint(arg); }
inline
half
nearbyint
(
half
arg
)
{
return
functions
::
rint
(
arg
);
}
inline
half
nearbyint
(
expr
arg
)
{
return
functions
::
rint
(
arg
);
}
/// Nearest integer using half's internal rounding mode.
/// \param arg half expression to round
/// \return nearest integer using default rounding mode
// template<typename T> typename enable<half,T>::type rint(T arg) { return functions::rint(arg); }
inline
half
rint
(
half
arg
)
{
return
functions
::
rint
(
arg
);
}
inline
half
rint
(
expr
arg
)
{
return
functions
::
rint
(
arg
);
}
/// Nearest integer using half's internal rounding mode.
/// \param arg half expression to round
/// \return nearest integer using default rounding mode
// template<typename T> typename enable<long,T>::type lrint(T arg) { return functions::lrint(arg); }
inline
long
lrint
(
half
arg
)
{
return
functions
::
lrint
(
arg
);
}
inline
long
lrint
(
expr
arg
)
{
return
functions
::
lrint
(
arg
);
}
#if HALF_ENABLE_CPP11_LONG_LONG
/// Nearest integer.
/// \param arg half to round
/// \return nearest integer, rounded away from zero in half-way cases
// template<typename T> typename enable<long long,T>::type llround(T arg) { return functions::llround(arg); }
inline
long
long
llround
(
half
arg
)
{
return
functions
::
llround
(
arg
);
}
inline
long
long
llround
(
expr
arg
)
{
return
functions
::
llround
(
arg
);
}
/// Nearest integer using half's internal rounding mode.
/// \param arg half expression to round
/// \return nearest integer using default rounding mode
// template<typename T> typename enable<long long,T>::type llrint(T arg) { return functions::llrint(arg); }
inline
long
long
llrint
(
half
arg
)
{
return
functions
::
llrint
(
arg
);
}
inline
long
long
llrint
(
expr
arg
)
{
return
functions
::
llrint
(
arg
);
}
#endif
/// \}
/// \name Floating point manipulation
/// \{
/// Decompress floating point number.
/// \param arg number to decompress
/// \param exp address to store exponent at
/// \return significant in range [0.5, 1)
// template<typename T> typename enable<half,T>::type frexp(T arg, int *exp) { return functions::frexp(arg, exp); }
inline
half
frexp
(
half
arg
,
int
*
exp
)
{
return
functions
::
frexp
(
arg
,
exp
);
}
inline
half
frexp
(
expr
arg
,
int
*
exp
)
{
return
functions
::
frexp
(
arg
,
exp
);
}
/// Multiply by power of two.
/// \param arg number to modify
/// \param exp power of two to multiply with
/// \return \a arg multplied by 2 raised to \a exp
// template<typename T> typename enable<half,T>::type ldexp(T arg, int exp) { return functions::scalbln(arg, exp); }
inline
half
ldexp
(
half
arg
,
int
exp
)
{
return
functions
::
scalbln
(
arg
,
exp
);
}
inline
half
ldexp
(
expr
arg
,
int
exp
)
{
return
functions
::
scalbln
(
arg
,
exp
);
}
/// Extract integer and fractional parts.
/// \param arg number to decompress
/// \param iptr address to store integer part at
/// \return fractional part
// template<typename T> typename enable<half,T>::type modf(T arg, half *iptr) { return functions::modf(arg, iptr); }
inline
half
modf
(
half
arg
,
half
*
iptr
)
{
return
functions
::
modf
(
arg
,
iptr
);
}
inline
half
modf
(
expr
arg
,
half
*
iptr
)
{
return
functions
::
modf
(
arg
,
iptr
);
}
/// Multiply by power of two.
/// \param arg number to modify
/// \param exp power of two to multiply with
/// \return \a arg multplied by 2 raised to \a exp
// template<typename T> typename enable<half,T>::type scalbn(T arg, int exp) { return functions::scalbln(arg, exp); }
inline
half
scalbn
(
half
arg
,
int
exp
)
{
return
functions
::
scalbln
(
arg
,
exp
);
}
inline
half
scalbn
(
expr
arg
,
int
exp
)
{
return
functions
::
scalbln
(
arg
,
exp
);
}
/// Multiply by power of two.
/// \param arg number to modify
/// \param exp power of two to multiply with
/// \return \a arg multplied by 2 raised to \a exp
// template<typename T> typename enable<half,T>::type scalbln(T arg, long exp) { return functions::scalbln(arg, exp); }
inline
half
scalbln
(
half
arg
,
long
exp
)
{
return
functions
::
scalbln
(
arg
,
exp
);
}
inline
half
scalbln
(
expr
arg
,
long
exp
)
{
return
functions
::
scalbln
(
arg
,
exp
);
}
/// Extract exponent.
/// \param arg number to query
/// \return floating point exponent
/// \retval FP_ILOGB0 for zero
/// \retval FP_ILOGBNAN for NaN
/// \retval MAX_INT for infinity
// template<typename T> typename enable<int,T>::type ilogb(T arg) { return functions::ilogb(arg); }
inline
int
ilogb
(
half
arg
)
{
return
functions
::
ilogb
(
arg
);
}
inline
int
ilogb
(
expr
arg
)
{
return
functions
::
ilogb
(
arg
);
}
/// Extract exponent.
/// \param arg number to query
/// \return floating point exponent
// template<typename T> typename enable<half,T>::type logb(T arg) { return functions::logb(arg); }
inline
half
logb
(
half
arg
)
{
return
functions
::
logb
(
arg
);
}
inline
half
logb
(
expr
arg
)
{
return
functions
::
logb
(
arg
);
}
/// Next representable value.
/// \param from value to compute next representable value for
/// \param to direction towards which to compute next value
/// \return next representable value after \a from in direction towards \a to
// template<typename T,typename U> typename enable<half,T,U>::type nextafter(T from, U to) { return functions::nextafter(from, to); }
inline
half
nextafter
(
half
from
,
half
to
)
{
return
functions
::
nextafter
(
from
,
to
);
}
inline
half
nextafter
(
half
from
,
expr
to
)
{
return
functions
::
nextafter
(
from
,
to
);
}
inline
half
nextafter
(
expr
from
,
half
to
)
{
return
functions
::
nextafter
(
from
,
to
);
}
inline
half
nextafter
(
expr
from
,
expr
to
)
{
return
functions
::
nextafter
(
from
,
to
);
}
/// Next representable value.
/// \param from value to compute next representable value for
/// \param to direction towards which to compute next value
/// \return next representable value after \a from in direction towards \a to
// template<typename T> typename enable<half,T>::type nexttoward(T from, long double to) { return functions::nexttoward(from, to); }
inline
half
nexttoward
(
half
from
,
long
double
to
)
{
return
functions
::
nexttoward
(
from
,
to
);
}
inline
half
nexttoward
(
expr
from
,
long
double
to
)
{
return
functions
::
nexttoward
(
from
,
to
);
}
/// Take sign.
/// \param x value to change sign for
/// \param y value to take sign from
/// \return value equal to \a x in magnitude and to \a y in sign
// template<typename T,typename U> typename enable<half,T,U>::type copysign(T x, U y) { return functions::copysign(x, y); }
inline
half
copysign
(
half
x
,
half
y
)
{
return
functions
::
copysign
(
x
,
y
);
}
inline
half
copysign
(
half
x
,
expr
y
)
{
return
functions
::
copysign
(
x
,
y
);
}
inline
half
copysign
(
expr
x
,
half
y
)
{
return
functions
::
copysign
(
x
,
y
);
}
inline
half
copysign
(
expr
x
,
expr
y
)
{
return
functions
::
copysign
(
x
,
y
);
}
/// \}
/// \name Floating point classification
/// \{
/// Classify floating point value.
/// \param arg number to classify
/// \retval FP_ZERO for positive and negative zero
/// \retval FP_SUBNORMAL for subnormal numbers
/// \retval FP_INFINITY for positive and negative infinity
/// \retval FP_NAN for NaNs
/// \retval FP_NORMAL for all other (normal) values
// template<typename T> typename enable<int,T>::type fpclassify(T arg) { return functions::fpclassify(arg); }
inline
int
fpclassify
(
half
arg
)
{
return
functions
::
fpclassify
(
arg
);
}
inline
int
fpclassify
(
expr
arg
)
{
return
functions
::
fpclassify
(
arg
);
}
/// Check if finite number.
/// \param arg number to check
/// \retval true if neither infinity nor NaN
/// \retval false else
// template<typename T> typename enable<bool,T>::type isfinite(T arg) { return functions::isfinite(arg); }
inline
bool
isfinite
(
half
arg
)
{
return
functions
::
isfinite
(
arg
);
}
inline
bool
isfinite
(
expr
arg
)
{
return
functions
::
isfinite
(
arg
);
}
/// Check for infinity.
/// \param arg number to check
/// \retval true for positive or negative infinity
/// \retval false else
// template<typename T> typename enable<bool,T>::type isinf(T arg) { return functions::isinf(arg); }
inline
bool
isinf
(
half
arg
)
{
return
functions
::
isinf
(
arg
);
}
inline
bool
isinf
(
expr
arg
)
{
return
functions
::
isinf
(
arg
);
}
/// Check for NaN.
/// \param arg number to check
/// \retval true for NaNs
/// \retval false else
// template<typename T> typename enable<bool,T>::type isnan(T arg) { return functions::isnan(arg); }
inline
bool
isnan
(
half
arg
)
{
return
functions
::
isnan
(
arg
);
}
inline
bool
isnan
(
expr
arg
)
{
return
functions
::
isnan
(
arg
);
}
/// Check if normal number.
/// \param arg number to check
/// \retval true if normal number
/// \retval false if either subnormal, zero, infinity or NaN
// template<typename T> typename enable<bool,T>::type isnormal(T arg) { return functions::isnormal(arg); }
inline
bool
isnormal
(
half
arg
)
{
return
functions
::
isnormal
(
arg
);
}
inline
bool
isnormal
(
expr
arg
)
{
return
functions
::
isnormal
(
arg
);
}
/// Check sign.
/// \param arg number to check
/// \retval true for negative number
/// \retval false for positive number
// template<typename T> typename enable<bool,T>::type signbit(T arg) { return functions::signbit(arg); }
inline
bool
signbit
(
half
arg
)
{
return
functions
::
signbit
(
arg
);
}
inline
bool
signbit
(
expr
arg
)
{
return
functions
::
signbit
(
arg
);
}
/// \}
/// \name Comparison
/// \{
/// Comparison for greater than.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x greater than \a y
/// \retval false else
// template<typename T,typename U> typename enable<bool,T,U>::type isgreater(T x, U y) { return functions::isgreater(x, y); }
inline
bool
isgreater
(
half
x
,
half
y
)
{
return
functions
::
isgreater
(
x
,
y
);
}
inline
bool
isgreater
(
half
x
,
expr
y
)
{
return
functions
::
isgreater
(
x
,
y
);
}
inline
bool
isgreater
(
expr
x
,
half
y
)
{
return
functions
::
isgreater
(
x
,
y
);
}
inline
bool
isgreater
(
expr
x
,
expr
y
)
{
return
functions
::
isgreater
(
x
,
y
);
}
/// Comparison for greater equal.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x greater equal \a y
/// \retval false else
// template<typename T,typename U> typename enable<bool,T,U>::type isgreaterequal(T x, U y) { return functions::isgreaterequal(x, y); }
inline
bool
isgreaterequal
(
half
x
,
half
y
)
{
return
functions
::
isgreaterequal
(
x
,
y
);
}
inline
bool
isgreaterequal
(
half
x
,
expr
y
)
{
return
functions
::
isgreaterequal
(
x
,
y
);
}
inline
bool
isgreaterequal
(
expr
x
,
half
y
)
{
return
functions
::
isgreaterequal
(
x
,
y
);
}
inline
bool
isgreaterequal
(
expr
x
,
expr
y
)
{
return
functions
::
isgreaterequal
(
x
,
y
);
}
/// Comparison for less than.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x less than \a y
/// \retval false else
// template<typename T,typename U> typename enable<bool,T,U>::type isless(T x, U y) { return functions::isless(x, y); }
inline
bool
isless
(
half
x
,
half
y
)
{
return
functions
::
isless
(
x
,
y
);
}
inline
bool
isless
(
half
x
,
expr
y
)
{
return
functions
::
isless
(
x
,
y
);
}
inline
bool
isless
(
expr
x
,
half
y
)
{
return
functions
::
isless
(
x
,
y
);
}
inline
bool
isless
(
expr
x
,
expr
y
)
{
return
functions
::
isless
(
x
,
y
);
}
/// Comparison for less equal.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x less equal \a y
/// \retval false else
// template<typename T,typename U> typename enable<bool,T,U>::type islessequal(T x, U y) { return functions::islessequal(x, y); }
inline
bool
islessequal
(
half
x
,
half
y
)
{
return
functions
::
islessequal
(
x
,
y
);
}
inline
bool
islessequal
(
half
x
,
expr
y
)
{
return
functions
::
islessequal
(
x
,
y
);
}
inline
bool
islessequal
(
expr
x
,
half
y
)
{
return
functions
::
islessequal
(
x
,
y
);
}
inline
bool
islessequal
(
expr
x
,
expr
y
)
{
return
functions
::
islessequal
(
x
,
y
);
}
/// Comarison for less or greater.
/// \param x first operand
/// \param y second operand
/// \retval true if either less or greater
/// \retval false else
// template<typename T,typename U> typename enable<bool,T,U>::type islessgreater(T x, U y) { return functions::islessgreater(x, y); }
inline
bool
islessgreater
(
half
x
,
half
y
)
{
return
functions
::
islessgreater
(
x
,
y
);
}
inline
bool
islessgreater
(
half
x
,
expr
y
)
{
return
functions
::
islessgreater
(
x
,
y
);
}
inline
bool
islessgreater
(
expr
x
,
half
y
)
{
return
functions
::
islessgreater
(
x
,
y
);
}
inline
bool
islessgreater
(
expr
x
,
expr
y
)
{
return
functions
::
islessgreater
(
x
,
y
);
}
/// Check if unordered.
/// \param x first operand
/// \param y second operand
/// \retval true if unordered (one or two NaN operands)
/// \retval false else
// template<typename T,typename U> typename enable<bool,T,U>::type isunordered(T x, U y) { return functions::isunordered(x, y); }
inline
bool
isunordered
(
half
x
,
half
y
)
{
return
functions
::
isunordered
(
x
,
y
);
}
inline
bool
isunordered
(
half
x
,
expr
y
)
{
return
functions
::
isunordered
(
x
,
y
);
}
inline
bool
isunordered
(
expr
x
,
half
y
)
{
return
functions
::
isunordered
(
x
,
y
);
}
inline
bool
isunordered
(
expr
x
,
expr
y
)
{
return
functions
::
isunordered
(
x
,
y
);
}
/// \name Casting
/// \{
/// Cast to or from half-precision floating point number.
/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
/// directly using the given rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
/// It uses the default rounding mode.
///
/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
/// error and casting between [half](\ref half_float::half)s is just a no-op.
/// \tparam T destination type (half or built-in arithmetic type)
/// \tparam U source type (half or built-in arithmetic type)
/// \param arg value to cast
/// \return \a arg converted to destination type
template
<
typename
T
,
typename
U
>
T
half_cast
(
U
arg
)
{
return
half_caster
<
T
,
U
>::
cast
(
arg
);
}
/// Cast to or from half-precision floating point number.
/// This casts between [half](\ref half_float::half) and any built-in arithmetic type. The values are converted
/// directly using the given rounding mode, without any roundtrip over `float` that a `static_cast` would otherwise do.
///
/// Using this cast with neither of the two types being a [half](\ref half_float::half) or with any of the two types
/// not being a built-in arithmetic type (apart from [half](\ref half_float::half), of course) results in a compiler
/// error and casting between [half](\ref half_float::half)s is just a no-op.
/// \tparam T destination type (half or built-in arithmetic type)
/// \tparam R rounding mode to use.
/// \tparam U source type (half or built-in arithmetic type)
/// \param arg value to cast
/// \return \a arg converted to destination type
template
<
typename
T
,
std
::
float_round_style
R
,
typename
U
>
T
half_cast
(
U
arg
)
{
return
half_caster
<
T
,
U
,
R
>::
cast
(
arg
);
}
/// \}
}
using
detail
::
operator
==
;
using
detail
::
operator
!=
;
using
detail
::
operator
<
;
using
detail
::
operator
>
;
using
detail
::
operator
<=
;
using
detail
::
operator
>=
;
using
detail
::
operator
+
;
using
detail
::
operator
-
;
using
detail
::
operator
*
;
using
detail
::
operator
/
;
using
detail
::
operator
<<
;
using
detail
::
operator
>>
;
using
detail
::
abs
;
using
detail
::
fabs
;
using
detail
::
fmod
;
using
detail
::
remainder
;
using
detail
::
remquo
;
using
detail
::
fma
;
using
detail
::
fmax
;
using
detail
::
fmin
;
using
detail
::
fdim
;
using
detail
::
nanh
;
using
detail
::
exp
;
using
detail
::
expm1
;
using
detail
::
exp2
;
using
detail
::
log
;
using
detail
::
log10
;
using
detail
::
log1p
;
using
detail
::
log2
;
using
detail
::
sqrt
;
using
detail
::
cbrt
;
using
detail
::
hypot
;
using
detail
::
pow
;
using
detail
::
sin
;
using
detail
::
cos
;
using
detail
::
tan
;
using
detail
::
asin
;
using
detail
::
acos
;
using
detail
::
atan
;
using
detail
::
atan2
;
using
detail
::
sinh
;
using
detail
::
cosh
;
using
detail
::
tanh
;
using
detail
::
asinh
;
using
detail
::
acosh
;
using
detail
::
atanh
;
using
detail
::
erf
;
using
detail
::
erfc
;
using
detail
::
lgamma
;
using
detail
::
tgamma
;
using
detail
::
ceil
;
using
detail
::
floor
;
using
detail
::
trunc
;
using
detail
::
round
;
using
detail
::
lround
;
using
detail
::
nearbyint
;
using
detail
::
rint
;
using
detail
::
lrint
;
#if HALF_ENABLE_CPP11_LONG_LONG
using
detail
::
llround
;
using
detail
::
llrint
;
#endif
using
detail
::
frexp
;
using
detail
::
ldexp
;
using
detail
::
modf
;
using
detail
::
scalbn
;
using
detail
::
scalbln
;
using
detail
::
ilogb
;
using
detail
::
logb
;
using
detail
::
nextafter
;
using
detail
::
nexttoward
;
using
detail
::
copysign
;
using
detail
::
fpclassify
;
using
detail
::
isfinite
;
using
detail
::
isinf
;
using
detail
::
isnan
;
using
detail
::
isnormal
;
using
detail
::
signbit
;
using
detail
::
isgreater
;
using
detail
::
isgreaterequal
;
using
detail
::
isless
;
using
detail
::
islessequal
;
using
detail
::
islessgreater
;
using
detail
::
isunordered
;
using
detail
::
half_cast
;
}
/// Extensions to the C++ standard library.
namespace
std
{
/// Numeric limits for half-precision floats.
/// Because of the underlying single-precision implementation of many operations, it inherits some properties from
/// `std::numeric_limits<float>`.
template
<
>
class
numeric_limits
<
half_float
::
half
>
:
public
numeric_limits
<
float
>
{
public:
/// Supports signed values.
static
HALF_CONSTEXPR_CONST
bool
is_signed
=
true
;
/// Is not exact.
static
HALF_CONSTEXPR_CONST
bool
is_exact
=
false
;
/// Doesn't provide modulo arithmetic.
static
HALF_CONSTEXPR_CONST
bool
is_modulo
=
false
;
/// IEEE conformant.
static
HALF_CONSTEXPR_CONST
bool
is_iec559
=
true
;
/// Supports infinity.
static
HALF_CONSTEXPR_CONST
bool
has_infinity
=
true
;
/// Supports quiet NaNs.
static
HALF_CONSTEXPR_CONST
bool
has_quiet_NaN
=
true
;
/// Supports subnormal values.
static
HALF_CONSTEXPR_CONST
float_denorm_style
has_denorm
=
denorm_present
;
/// Rounding mode.
/// Due to the mix of internal single-precision computations (using the rounding mode of the underlying
/// single-precision implementation) with the rounding mode of the single-to-half conversions, the actual rounding
/// mode might be `std::round_indeterminate` if the default half-precision rounding mode doesn't match the
/// single-precision rounding mode.
static
HALF_CONSTEXPR_CONST
float_round_style
round_style
=
(
std
::
numeric_limits
<
float
>::
round_style
==
half_float
::
half
::
round_style
)
?
half_float
::
half
::
round_style
:
round_indeterminate
;
/// Significant digits.
static
HALF_CONSTEXPR_CONST
int
digits
=
11
;
/// Significant decimal digits.
static
HALF_CONSTEXPR_CONST
int
digits10
=
3
;
/// Required decimal digits to represent all possible values.
static
HALF_CONSTEXPR_CONST
int
max_digits10
=
5
;
/// Number base.
static
HALF_CONSTEXPR_CONST
int
radix
=
2
;
/// One more than smallest exponent.
static
HALF_CONSTEXPR_CONST
int
min_exponent
=
-
13
;
/// Smallest normalized representable power of 10.
static
HALF_CONSTEXPR_CONST
int
min_exponent10
=
-
4
;
/// One more than largest exponent
static
HALF_CONSTEXPR_CONST
int
max_exponent
=
16
;
/// Largest finitely representable power of 10.
static
HALF_CONSTEXPR_CONST
int
max_exponent10
=
4
;
/// Smallest positive normal value.
static
HALF_CONSTEXPR
half_float
::
half
min
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
0x0400
);
}
/// Smallest finite value.
static
HALF_CONSTEXPR
half_float
::
half
lowest
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
0xFBFF
);
}
/// Largest finite value.
static
HALF_CONSTEXPR
half_float
::
half
max
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
0x7BFF
);
}
/// Difference between one and next representable value.
static
HALF_CONSTEXPR
half_float
::
half
epsilon
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
0x1400
);
}
/// Maximum rounding error.
static
HALF_CONSTEXPR
half_float
::
half
round_error
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
(
round_style
==
std
::
round_to_nearest
)
?
0x3800
:
0x3C00
);
}
/// Positive infinity.
static
HALF_CONSTEXPR
half_float
::
half
infinity
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
0x7C00
);
}
/// Quiet NaN.
static
HALF_CONSTEXPR
half_float
::
half
quiet_NaN
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
0x7FFF
);
}
/// Signalling NaN.
static
HALF_CONSTEXPR
half_float
::
half
signaling_NaN
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
0x7DFF
);
}
/// Smallest positive subnormal value.
static
HALF_CONSTEXPR
half_float
::
half
denorm_min
()
HALF_NOTHROW
{
return
half_float
::
half
(
half_float
::
detail
::
binary
,
0x0001
);
}
};
#if HALF_ENABLE_CPP11_HASH
/// Hash function for half-precision floats.
/// This is only defined if C++11 `std::hash` is supported and enabled.
template
<
>
struct
hash
<
half_float
::
half
>
//: unary_function<half_float::half,size_t>
{
/// Type of function argument.
typedef
half_float
::
half
argument_type
;
/// Function return type.
typedef
size_t
result_type
;
/// Compute hash function.
/// \param arg half to hash
/// \return hash value
result_type
operator
()(
argument_type
arg
)
const
{
return
hash
<
half_float
::
detail
::
uint16
>
()(
static_cast
<
unsigned
>
(
arg
.
data_
)
&-
(
arg
.
data_
!=
0x8000
));
}
};
#endif
}
#undef HALF_CONSTEXPR
#undef HALF_CONSTEXPR_CONST
#undef HALF_NOEXCEPT
#undef HALF_NOTHROW
#ifdef HALF_POP_WARNINGS
#pragma warning(pop)
#undef HALF_POP_WARNINGS
#endif
#endif
mace/core/types.h
浏览文件 @
2b180489
...
@@ -7,8 +7,8 @@
...
@@ -7,8 +7,8 @@
#include <cstdint>
#include <cstdint>
#include "mace/core/half.h"
#include "mace/public/mace.h"
#include "mace/public/mace.h"
#include "include/half.hpp"
namespace
mace
{
namespace
mace
{
...
...
mace/kernels/activation.h
浏览文件 @
2b180489
...
@@ -140,7 +140,7 @@ template <typename T>
...
@@ -140,7 +140,7 @@ template <typename T>
class
ActivationFunctor
<
DeviceType
::
OPENCL
,
T
>
{
class
ActivationFunctor
<
DeviceType
::
OPENCL
,
T
>
{
public:
public:
ActivationFunctor
(
ActivationType
type
,
T
relux_max_limit
)
ActivationFunctor
(
ActivationType
type
,
T
relux_max_limit
)
:
activation_
(
type
),
relux_max_limit_
(
relux_max_limit
)
{}
:
activation_
(
type
),
relux_max_limit_
(
static_cast
<
T
>
(
relux_max_limit
)
)
{}
void
operator
()(
const
Tensor
*
input
,
void
operator
()(
const
Tensor
*
input
,
const
Tensor
*
alpha
,
const
Tensor
*
alpha
,
...
...
mace/kernels/pooling.h
浏览文件 @
2b180489
...
@@ -138,7 +138,7 @@ struct PoolingFunctor : PoolingFunctorBase {
...
@@ -138,7 +138,7 @@ struct PoolingFunctor : PoolingFunctorBase {
index_t
out_offset
=
index_t
out_offset
=
(((
b
*
height
)
+
h
)
*
width
+
w
)
*
channels
+
c
;
(((
b
*
height
)
+
h
)
*
width
+
w
)
*
channels
+
c
;
index_t
in_offset
=
b
*
in_image_size
*
input_channels
+
c
;
index_t
in_offset
=
b
*
in_image_size
*
input_channels
+
c
;
T
sum
=
0
;
T
sum
=
static_cast
<
T
>
(
0
)
;
int
block_size
=
0
;
int
block_size
=
0
;
for
(
int
kh
=
0
;
kh
<
kernel_h
;
++
kh
)
{
for
(
int
kh
=
0
;
kh
<
kernel_h
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
kernel_w
;
++
kw
)
{
for
(
int
kw
=
0
;
kw
<
kernel_w
;
++
kw
)
{
...
...
mace/ops/activation.h
浏览文件 @
2b180489
...
@@ -18,7 +18,8 @@ class ActivationOp : public Operator<D, T> {
...
@@ -18,7 +18,8 @@ class ActivationOp : public Operator<D, T> {
functor_
(
kernels
::
StringToActivationType
(
functor_
(
kernels
::
StringToActivationType
(
OperatorBase
::
GetSingleArgument
<
std
::
string
>
(
"activation"
,
OperatorBase
::
GetSingleArgument
<
std
::
string
>
(
"activation"
,
"NOOP"
)),
"NOOP"
)),
OperatorBase
::
GetSingleArgument
<
float
>
(
"max_limit"
,
0.0
f
))
{}
static_cast
<
T
>
(
OperatorBase
::
GetSingleArgument
<
float
>
(
"max_limit"
,
0.0
f
)))
{}
bool
Run
(
StatsFuture
*
future
)
override
{
bool
Run
(
StatsFuture
*
future
)
override
{
const
Tensor
*
input_tensor
=
this
->
Input
(
0
);
const
Tensor
*
input_tensor
=
this
->
Input
(
0
);
...
...
mace/ops/depthwise_conv2d_test.cc
浏览文件 @
2b180489
...
@@ -64,8 +64,9 @@ void SimpleValidTest() {
...
@@ -64,8 +64,9 @@ void SimpleValidTest() {
}
}
// Check
// Check
auto
expected
=
CreateTensor
<
T
>
({
1
,
2
,
2
,
2
},
{
37.1
f
,
148.2
f
,
47.1
f
,
188.2
f
,
auto
expected
=
CreateTensor
<
T
>
(
67.1
f
,
268.2
f
,
77.1
f
,
308.2
f
});
{
1
,
2
,
2
,
2
},
VectorStaticCast
<
T
>
({
37.1
f
,
148.2
f
,
47.1
f
,
188.2
f
,
67.1
f
,
268.2
f
,
77.1
f
,
308.2
f
}));
ExpectTensorNear
<
T
>
(
*
expected
,
*
net
.
GetOutput
(
"Output"
),
1e-5
);
ExpectTensorNear
<
T
>
(
*
expected
,
*
net
.
GetOutput
(
"Output"
),
1e-5
);
}
}
...
@@ -169,21 +170,22 @@ void ComplexValidTest() {
...
@@ -169,21 +170,22 @@ void ComplexValidTest() {
// Check
// Check
auto
expected
=
CreateTensor
<
T
>
(
auto
expected
=
CreateTensor
<
T
>
(
{
1
,
5
,
5
,
3
},
{
1
,
5
,
5
,
3
},
{
4.48200035
,
4.63479996
,
4.79079962
,
5.85899973
,
6.05599976
,
VectorStaticCast
<
T
>
(
6.25699997
,
6.38100004
,
6.59000015
,
6.80300045
,
6.90299988
,
{
4.48200035
,
4.63479996
,
4.79079962
,
5.85899973
,
6.05599976
,
7.1239996
,
7.34899998
,
4.03559971
,
4.16820002
,
4.30319977
,
6.25699997
,
6.38100004
,
6.59000015
,
6.80300045
,
6.90299988
,
8.90999985
,
9.1760006
,
9.44599915
,
11.20499992
,
11.54500103
,
7.1239996
,
7.34899998
,
4.03559971
,
4.16820002
,
4.30319977
,
11.89000034
,
11.74499989
,
12.09999943
,
12.46000004
,
12.28499985
,
8.90999985
,
9.1760006
,
9.44599915
,
11.20499992
,
11.54500103
,
12.65500069
,
13.03000069
,
7.00200033
,
7.22399998
,
7.44900036
,
11.89000034
,
11.74499989
,
12.09999943
,
12.46000004
,
12.28499985
,
13.4100008
,
13.79599953
,
14.18599987
,
16.60500145
,
17.09499741
,
12.65500069
,
13.03000069
,
7.00200033
,
7.22399998
,
7.44900036
,
17.59000015
,
17.14500046
,
17.65000153
,
18.15999794
,
17.68499947
,
13.4100008
,
13.79599953
,
14.18599987
,
16.60500145
,
17.09499741
,
18.20499992
,
18.72999954
,
9.97200012
,
10.28399944
,
10.59899998
,
17.59000015
,
17.14500046
,
17.65000153
,
18.15999794
,
17.68499947
,
17.90999985
,
18.41600037
,
18.92599869
,
22.00500107
,
22.64500046
,
18.20499992
,
18.72999954
,
9.97200012
,
10.28399944
,
10.59899998
,
23.28999901
,
22.54500008
,
23.19999886
,
23.8599987
,
23.0850029
,
17.90999985
,
18.41600037
,
18.92599869
,
22.00500107
,
22.64500046
,
23.75500107
,
24.43000031
,
12.94200039
,
13.34400082
,
13.7489996
,
23.28999901
,
22.54500008
,
23.19999886
,
23.8599987
,
23.0850029
,
6.97500038
,
7.29659986
,
7.62060022
,
8.32049942
,
8.72700024
,
23.75500107
,
24.43000031
,
12.94200039
,
13.34400082
,
13.7489996
,
9.13650036
,
8.5095005
,
8.92500019
,
9.34349918
,
8.69849968
,
6.97500038
,
7.29659986
,
7.62060022
,
8.32049942
,
8.72700024
,
9.12300014
,
9.55049992
,
4.55220032
,
4.80690002
,
5.06340027
});
9.13650036
,
8.5095005
,
8.92500019
,
9.34349918
,
8.69849968
,
9.12300014
,
9.55049992
,
4.55220032
,
4.80690002
,
5.06340027
}));
ExpectTensorNear
<
T
>
(
*
expected
,
*
net
.
GetOutput
(
"Output"
),
0.2
);
ExpectTensorNear
<
T
>
(
*
expected
,
*
net
.
GetOutput
(
"Output"
),
0.2
);
}
}
...
...
mace/ops/ops_test_util.h
浏览文件 @
2b180489
...
@@ -237,6 +237,16 @@ void GenerateRandomIntTypeData(const std::vector<index_t> &shape,
...
@@ -237,6 +237,16 @@ void GenerateRandomIntTypeData(const std::vector<index_t> &shape,
std
::
generate
(
res
.
begin
(),
res
.
end
(),
[
&
gen
,
&
nd
]
{
return
nd
(
gen
);
});
std
::
generate
(
res
.
begin
(),
res
.
end
(),
[
&
gen
,
&
nd
]
{
return
nd
(
gen
);
});
}
}
template
<
typename
T
>
std
::
vector
<
T
>
VectorStaticCast
(
const
std
::
vector
<
float
>
&&
src
)
{
std
::
vector
<
T
>
dest
;
dest
.
reserve
(
src
.
size
());
for
(
float
f
:
src
)
{
dest
.
push_back
(
static_cast
<
T
>
(
f
));
}
return
std
::
move
(
dest
);
}
template
<
typename
T
>
template
<
typename
T
>
std
::
unique_ptr
<
Tensor
>
CreateTensor
(
const
std
::
vector
<
index_t
>
&
shape
,
std
::
unique_ptr
<
Tensor
>
CreateTensor
(
const
std
::
vector
<
index_t
>
&
shape
,
const
std
::
vector
<
T
>
&
data
)
{
const
std
::
vector
<
T
>
&
data
)
{
...
...
mace/third_party/half.BUILD
0 → 100644
浏览文件 @
2b180489
cc_library(
name = "half",
hdrs = glob([
"include/half.hpp",
]),
visibility = ["//visibility:public"],
)
mace/third_party/opencl-clhpp.BUILD
浏览文件 @
2b180489
...
@@ -10,6 +10,6 @@ genrule(
...
@@ -10,6 +10,6 @@ genrule(
cc_library(
cc_library(
name = "opencl_clhpp",
name = "opencl_clhpp",
src
s = ["include/CL/cl.hpp", "include/CL/cl2.hpp"],
hdr
s = ["include/CL/cl.hpp", "include/CL/cl2.hpp"],
visibility = ["//visibility:public"],
visibility = ["//visibility:public"],
)
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录