# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.fluid as fluid import math import os from imagenet_reader import train, val __all__ = [ "SE_ResNeXt", "SE_ResNeXt50_32x4d", "SE_ResNeXt101_32x4d", "SE_ResNeXt152_32x4d", "get_model" ] train_parameters = { "input_size": [3, 224, 224], "input_mean": [0.485, 0.456, 0.406], "input_std": [0.229, 0.224, 0.225], "learning_strategy": { "name": "piecewise_decay", "batch_size": 256, "epochs": [30, 60, 90], "steps": [0.1, 0.01, 0.001, 0.0001] } } class SE_ResNeXt(): def __init__(self, layers=50, is_train=True): self.params = train_parameters self.layers = layers self.is_train = is_train def net(self, input, class_dim=1000): layers = self.layers supported_layers = [50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format(supported_layers, layers) if layers == 50: cardinality = 32 reduction_ratio = 16 depth = [3, 4, 6, 3] num_filters = [128, 256, 512, 1024] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu') conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') elif layers == 101: cardinality = 32 reduction_ratio = 16 depth = [3, 4, 23, 3] num_filters = [128, 256, 512, 1024] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu') conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') elif layers == 152: cardinality = 64 reduction_ratio = 16 depth = [3, 8, 36, 3] num_filters = [128, 256, 512, 1024] conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=3, stride=2, act='relu') conv = self.conv_bn_layer( input=conv, num_filters=64, filter_size=3, stride=1, act='relu') conv = self.conv_bn_layer( input=conv, num_filters=128, filter_size=3, stride=1, act='relu') conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, \ pool_type='max') for block in range(len(depth)): for i in range(depth[block]): conv = self.bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, cardinality=cardinality, reduction_ratio=reduction_ratio) pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_type='avg', global_pooling=True) drop = fluid.layers.dropout(x=pool, dropout_prob=0.5) stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0) out = fluid.layers.fc(input=drop, size=class_dim, act='softmax', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) return out def shortcut(self, input, ch_out, stride): ch_in = input.shape[1] if ch_in != ch_out or stride != 1: filter_size = 1 return self.conv_bn_layer(input, ch_out, filter_size, stride) else: return input def bottleneck_block(self, input, num_filters, stride, cardinality, reduction_ratio): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu') conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, groups=cardinality, act='relu') conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters * 2, filter_size=1, act=None) scale = self.squeeze_excitation( input=conv2, num_channels=num_filters * 2, reduction_ratio=reduction_ratio) short = self.shortcut(input, num_filters * 2, stride) return fluid.layers.elementwise_add(x=short, y=scale, act='relu') def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) / 2, groups=groups, act=None, bias_attr=False) return fluid.layers.batch_norm( input=conv, act=act, is_test=not self.is_train) def squeeze_excitation(self, input, num_channels, reduction_ratio): pool = fluid.layers.pool2d( input=input, pool_size=0, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) squeeze = fluid.layers.fc(input=pool, size=num_channels / reduction_ratio, act='relu', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform( -stdv, stdv))) stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0) excitation = fluid.layers.fc(input=squeeze, size=num_channels, act='sigmoid', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform( -stdv, stdv))) scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) return scale def SE_ResNeXt50_32x4d(): model = SE_ResNeXt(layers=50) return model def SE_ResNeXt101_32x4d(): model = SE_ResNeXt(layers=101) return model def SE_ResNeXt152_32x4d(): model = SE_ResNeXt(layers=152) return model def get_model(args, is_train, main_prog, startup_prog): model = SE_ResNeXt(layers=50) batched_reader = None pyreader = None trainer_count = int(os.getenv("PADDLE_TRAINERS")) dshape = train_parameters["input_size"] with fluid.program_guard(main_prog, startup_prog): with fluid.unique_name.guard(): if args.use_reader_op: pyreader = fluid.layers.py_reader( capacity=10, shapes=([-1] + dshape, (-1, 1)), dtypes=('float32', 'int64'), name="train_reader" if is_train else "test_reader", use_double_buffer=True) input, label = fluid.layers.read_file(pyreader) else: input = fluid.layers.data( name='data', shape=dshape, dtype='float32') label = fluid.layers.data( name='label', shape=[1], dtype='int64') out = model.net(input=input) cost = fluid.layers.cross_entropy(input=out, label=label) avg_cost = fluid.layers.mean(x=cost) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) optimizer = None if is_train: total_images = 1281167 / trainer_count step = int(total_images / args.batch_size + 1) epochs = [40, 80, 100] bd = [step * e for e in epochs] base_lr = args.learning_rate lr = [] lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] optimizer = fluid.optimizer.Momentum( # learning_rate=base_lr, learning_rate=fluid.layers.piecewise_decay( boundaries=bd, values=lr), momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-4)) optimizer.minimize(avg_cost) if args.memory_optimize: fluid.memory_optimize(main_prog) # config readers if is_train: reader = train() else: reader = val() if not args.use_reader_op: batched_reader = paddle.batch( reader, batch_size=args.batch_size * args.gpus, drop_last=True) else: pyreader.decorate_paddle_reader( paddle.batch( reader, batch_size=args.batch_size)) return avg_cost, optimizer, [acc_top1, acc_top5], batched_reader, pyreader