# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) def compile_net(net, x, y, b): net.set_auto_parallel() _executor.compile(net, x, y, b) def test_matmul_pow(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.pow = P.Pow().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.pow(out, 2.0) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), ()) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_exp(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.exp = P.Exp().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.exp(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_log(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.log = P.Log().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.log(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_abs(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.abs = P.Abs().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.abs(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_sign(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.sign = P.Sign().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.sign(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_floor(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.floor = P.Floor().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.floor(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_round(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.round = P.Round().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.round(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_reciprocal(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.reciprocal = P.Reciprocal().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.reciprocal(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_inv(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.inv = P.Inv().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.inv(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_rsqrt(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.rsqrt = P.Rsqrt().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.rsqrt(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_tan(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.tan = P.Tan().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.tan(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_sin(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.sin = P.Sin().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.sin(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_sinh(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.sinh = P.Sinh().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.sinh(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_log1p(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.log1p = P.Log1p().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.log1p(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_expm1(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.expm1 = P.Expm1().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.expm1(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_cosh(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cosh = P.Cosh().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.cosh(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_erf(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.erf = P.Erf().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.erf(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(1, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(1, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(1, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_erfc(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.erfc = P.Erfc().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.erfc(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(1, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(1, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(1, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_zeroslike(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.zeroslike = P.ZerosLike().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.zeroslike(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(1, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(1, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(1, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_oneslike(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.oneslike = P.OnesLike().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.oneslike(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(1, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(1, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(1, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_BesselI0e(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.BesselI0e = P.BesselI0e().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.BesselI0e(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(1, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(1, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(1, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_BesselI1e(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.BesselI1e = P.BesselI1e().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.BesselI1e(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(1, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(1, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(1, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_ceil(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.Ceil = P.Ceil().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.Ceil(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_atan(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.atan = P.Atan().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.atan(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_Atanh(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.atanh = P.Atanh().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.atanh(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_asin(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.asin = P.Asin().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.asin(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_asinh(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.asinh = P.Asinh().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.asinh(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_acosh(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.acosh = P.Acosh().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.acosh(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.random.uniform(-5, 5, size=(128, 32)), dtype=ms.float32) y = Tensor(np.random.uniform(-5, 5, size=(32, 64)), dtype=ms.float32) b = Tensor(np.random.uniform(-5, 5, size=(64, 64)), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_logical_not(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.logicalnot = P.LogicalNot().set_strategy(strategy2) self.equal = P.Equal().set_strategy(strategy3) def construct(self, x, y, b): out = self.matmul(x, y) out = self.equal(out, b) out = self.logicalnot(out) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) strategy3 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([128, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_cast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy3) def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float32) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2),) strategy3 = ((1, 4), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.int32) compile_net(net, x, y, b) def test_gradient_fp32_sync(): class Net(nn.Cell): def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast() def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float32) out = self.matmul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0, gradient_fp32_sync=True) strategy1 = ((2, 2), (2, 2)) net = GradWrap(NetWithLoss(Net(strategy1))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float16) compile_net(net, x, y, b) def test_gradient_fp32_sync1(): class Net(nn.Cell): def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast() def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float16) out = self.matmul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0, gradient_fp32_sync=True) strategy1 = ((2, 2), (2, 2)) net = GradWrap(NetWithLoss(Net(strategy1))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float16) y = Tensor(np.ones([32, 64]), dtype=ms.float16) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_gradient_fp32_sync2(): class Net(nn.Cell): def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast() def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float16) out = self.matmul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0, gradient_fp32_sync=False) strategy1 = ((2, 2), (2, 2)) net = GradWrap(NetWithLoss(Net(strategy1))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float16) y = Tensor(np.ones([32, 64]), dtype=ms.float16) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_gradient_fp32_sync3(): class Net(nn.Cell): def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast() def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float16) out = self.matmul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) net = GradWrap(NetWithLoss(Net(strategy1))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float16) y = Tensor(np.ones([32, 64]), dtype=ms.float16) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_mul_two_cast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.mul = P.Mul().set_strategy(strategy1) self.mul2 = P.Mul().set_strategy(strategy2) self.cast = P.Cast().set_strategy(strategy3) self.cast2 = P.Cast().set_strategy(strategy3) def construct(self, x, y, b): out = self.mul(x, y) out = self.mul2(out, b) out = self.cast(out, ms.int32) out = self.cast2(out, ms.bool_) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((8, 1), (8, 1)) strategy3 = ((8, 1),) net = GradWrap(Net(strategy1, strategy2, strategy3)) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([128, 32]), dtype=ms.float32) b = Tensor(np.ones([128, 32]), dtype=ms.float32) compile_net(net, x, y, b)