/* * File : sdio.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006, RT-Thread Development Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Change Logs: * Date Author Notes * 2012-01-13 weety first version */ #include #include #include #ifndef RT_SDIO_STACK_SIZE #define RT_SDIO_STACK_SIZE 512 #endif #ifndef RT_SDIO_THREAD_PREORITY #define RT_SDIO_THREAD_PREORITY 0x40 #endif static rt_list_t sdio_cards; static rt_list_t sdio_drivers; struct sdio_card { struct rt_mmcsd_card *card; rt_list_t list; }; struct sdio_driver { struct rt_sdio_driver *drv; rt_list_t list; }; #define MIN(a, b) (a < b ? a : b) static const rt_uint8_t speed_value[16] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const rt_uint32_t speed_unit[8] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; rt_inline rt_int32_t sdio_match_card(struct rt_mmcsd_card *card, const struct rt_sdio_device_id *id); rt_int32_t sdio_io_send_op_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr, rt_uint32_t *cmd5_resp) { struct rt_mmcsd_cmd cmd; rt_int32_t i, err = 0; RT_ASSERT(host != RT_NULL); rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SD_IO_SEND_OP_COND; cmd.arg = ocr; cmd.flags = RESP_SPI_R4 | RESP_R4 | CMD_BCR; for (i = 100; i; i--) { err = mmcsd_send_cmd(host, &cmd, 0); if (err) break; /* if we're just probing, do a single pass */ if (ocr == 0) break; /* otherwise wait until reset completes */ if (controller_is_spi(host)) { /* * Both R1_SPI_IDLE and MMC_CARD_BUSY indicate * an initialized card under SPI, but some cards * (Marvell's) only behave when looking at this * one. */ if (cmd.resp[1] & CARD_BUSY) break; } else { if (cmd.resp[0] & CARD_BUSY) break; } err = -RT_ETIMEOUT; mmcsd_delay_ms(10); } if (cmd5_resp) *cmd5_resp = cmd.resp[controller_is_spi(host) ? 1 : 0]; return err; } rt_int32_t sdio_io_rw_direct(struct rt_mmcsd_card *card, rt_int32_t rw, rt_uint32_t fn, rt_uint32_t reg_addr, rt_uint8_t *pdata, rt_uint8_t raw) { struct rt_mmcsd_cmd cmd; rt_int32_t err; RT_ASSERT(card != RT_NULL); RT_ASSERT(fn <= SDIO_MAX_FUNCTIONS); if (reg_addr & ~SDIO_ARG_CMD53_REG_MASK) return -RT_ERROR; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SD_IO_RW_DIRECT; cmd.arg = rw ? SDIO_ARG_CMD52_WRITE : SDIO_ARG_CMD52_READ; cmd.arg |= fn << SDIO_ARG_CMD52_FUNC_SHIFT; cmd.arg |= raw ? SDIO_ARG_CMD52_RAW_FLAG : 0x00000000; cmd.arg |= reg_addr << SDIO_ARG_CMD52_REG_SHIFT; cmd.arg |= *pdata; cmd.flags = RESP_SPI_R5 | RESP_R5 | CMD_AC; err = mmcsd_send_cmd(card->host, &cmd, 0); if (err) return err; if (!controller_is_spi(card->host)) { if (cmd.resp[0] & R5_ERROR) return -RT_EIO; if (cmd.resp[0] & R5_FUNCTION_NUMBER) return -RT_ERROR; if (cmd.resp[0] & R5_OUT_OF_RANGE) return -RT_ERROR; } if (!rw || raw) { if (controller_is_spi(card->host)) *pdata = (cmd.resp[0] >> 8) & 0xFF; else *pdata = cmd.resp[0] & 0xFF; } return 0; } rt_int32_t sdio_io_rw_extended(struct rt_mmcsd_card *card, rt_int32_t rw, rt_uint32_t fn, rt_uint32_t addr, rt_int32_t op_code, rt_uint8_t *buf, rt_uint32_t blocks, rt_uint32_t blksize) { struct rt_mmcsd_req req; struct rt_mmcsd_cmd cmd; struct rt_mmcsd_data data; RT_ASSERT(card != RT_NULL); RT_ASSERT(fn <= SDIO_MAX_FUNCTIONS); RT_ASSERT(blocks != 1 || blksize <= 512); RT_ASSERT(blocks != 0); RT_ASSERT(blksize != 0); if (addr & ~SDIO_ARG_CMD53_REG_MASK) return -RT_ERROR; rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); req.cmd = &cmd; req.data = &data; cmd.cmd_code = SD_IO_RW_EXTENDED; cmd.arg = rw ? SDIO_ARG_CMD53_WRITE : SDIO_ARG_CMD53_READ; cmd.arg |= fn << SDIO_ARG_CMD53_FUNC_SHIFT; cmd.arg |= op_code ? SDIO_ARG_CMD53_INCREMENT : 0x00000000; cmd.arg |= addr << SDIO_ARG_CMD53_REG_SHIFT; if (blocks == 1 && blksize <= 512) cmd.arg |= (blksize == 512) ? 0 : blksize; /* byte mode */ else cmd.arg |= SDIO_ARG_CMD53_BLOCK_MODE | blocks; /* block mode */ cmd.flags = RESP_SPI_R5 | RESP_R5 | CMD_ADTC; data.blksize = blksize; data.blks = blocks; data.flags = rw ? DATA_DIR_WRITE : DATA_DIR_READ; data.buf = (rt_uint32_t *)buf; mmcsd_set_data_timeout(&data, card); mmcsd_send_request(card->host, &req); if (cmd.err) return cmd.err; if (data.err) return data.err; if (!controller_is_spi(card->host)) { if (cmd.resp[0] & R5_ERROR) return -RT_EIO; if (cmd.resp[0] & R5_FUNCTION_NUMBER) return -RT_ERROR; if (cmd.resp[0] & R5_OUT_OF_RANGE) return -RT_ERROR; } return 0; } rt_inline rt_uint32_t sdio_max_block_size(struct rt_sdio_function *func) { rt_uint32_t size = MIN(func->card->host->max_seg_size, func->card->host->max_blk_size); size = MIN(size, func->max_blk_size); return MIN(size, 512u); /* maximum size for byte mode */ } rt_int32_t sdio_io_rw_extended_block(struct rt_sdio_function *func, rt_int32_t rw, rt_uint32_t addr, rt_int32_t op_code, rt_uint8_t *buf, rt_uint32_t len) { rt_int32_t ret; rt_uint32_t left_size; rt_uint32_t max_blks, blks; left_size = len; /* Do the bulk of the transfer using block mode (if supported). */ if (func->card->cccr.multi_block && (len > sdio_max_block_size(func))) { max_blks = MIN(func->card->host->max_blk_count, func->card->host->max_seg_size / func->cur_blk_size); max_blks = MIN(max_blks, 511u); while (left_size > func->cur_blk_size) { blks = left_size / func->cur_blk_size; if (blks > max_blks) blks = max_blks; len = blks * func->cur_blk_size; ret = sdio_io_rw_extended(func->card, rw, func->num, addr, op_code, buf, blks, func->cur_blk_size); if (ret) return ret; left_size -= len; buf += len; if (op_code) addr += len; } } while (left_size > 0) { len = MIN(left_size, sdio_max_block_size(func)); ret = sdio_io_rw_extended(func->card, rw, func->num, addr, op_code, buf, 1, len); if (ret) return ret; left_size -= len; buf += len; if (op_code) addr += len; } return 0; } rt_uint8_t sdio_io_readb(struct rt_sdio_function *func, rt_uint32_t reg, rt_int32_t *err) { rt_uint8_t data; rt_int32_t ret; ret = sdio_io_rw_direct(func->card, 0, func->num, reg, &data, 0); if (err) { *err = ret; } return data; } rt_int32_t sdio_io_writeb(struct rt_sdio_function *func, rt_uint32_t reg, rt_uint8_t data) { return sdio_io_rw_direct(func->card, 1, func->num, reg, &data, 0); } rt_uint16_t sdio_io_readw(struct rt_sdio_function *func, rt_uint32_t addr, rt_int32_t *err) { rt_int32_t ret; rt_uint32_t dmabuf; if (err) *err = 0; ret = sdio_io_rw_extended_block(func, 0, addr, 1, (rt_uint8_t *)&dmabuf, 2); if (ret) { if (err) *err = ret; } return (rt_uint16_t)dmabuf; } rt_int32_t sdio_io_writew(struct rt_sdio_function *func, rt_uint16_t data, rt_uint32_t addr) { rt_uint32_t dmabuf = data; return sdio_io_rw_extended_block(func, 1, addr, 1, (rt_uint8_t *)&dmabuf, 2); } rt_uint32_t sdio_io_readl(struct rt_sdio_function *func, rt_uint32_t addr, rt_int32_t *err) { rt_int32_t ret; rt_uint32_t dmabuf; if (err) *err = 0; ret = sdio_io_rw_extended_block(func, 0, addr, 1, (rt_uint8_t *)&dmabuf, 4); if (ret) { if (err) *err = ret; } return dmabuf; } rt_int32_t sdio_io_writel(struct rt_sdio_function *func, rt_uint32_t data, rt_uint32_t addr) { rt_uint32_t dmabuf = data; return sdio_io_rw_extended_block(func, 1, addr, 1, (rt_uint8_t *)&dmabuf, 4); } rt_int32_t sdio_io_read_multi_fifo_b(struct rt_sdio_function *func, rt_uint32_t addr, rt_uint8_t *buf, rt_uint32_t len) { return sdio_io_rw_extended_block(func, 0, addr, 0, buf, len); } rt_int32_t sdio_io_write_multi_fifo_b(struct rt_sdio_function *func, rt_uint32_t addr, rt_uint8_t *buf, rt_uint32_t len) { return sdio_io_rw_extended_block(func, 1, addr, 0, buf, len); } rt_int32_t sdio_io_read_multi_incr_b(struct rt_sdio_function *func, rt_uint32_t addr, rt_uint8_t *buf, rt_uint32_t len) { return sdio_io_rw_extended_block(func, 0, addr, 1, buf, len); } rt_int32_t sdio_io_write_multi_incr_b(struct rt_sdio_function *func, rt_uint32_t addr, rt_uint8_t *buf, rt_uint32_t len) { return sdio_io_rw_extended_block(func, 1, addr, 1, buf, len); } static rt_int32_t sdio_read_cccr(struct rt_mmcsd_card *card) { rt_int32_t ret; rt_int32_t cccr_version; rt_uint8_t data; rt_memset(&card->cccr, 0, sizeof(struct rt_sdio_cccr)); data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_CCCR_REV, &ret); if (ret) goto out; cccr_version = data & 0x0f; if (cccr_version > SDIO_CCCR_REV_1_20) { rt_kprintf("unrecognised CCCR structure version %d\n", cccr_version); return -RT_ERROR; } card->cccr.sdio_version = (data & 0xf0) >> 4; data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_CARD_CAPS, &ret); if (ret) goto out; if (data & SDIO_CCCR_CAP_SMB) card->cccr.multi_block = 1; if (data & SDIO_CCCR_CAP_LSC) card->cccr.low_speed = 1; if (data & SDIO_CCCR_CAP_4BLS) card->cccr.low_speed_4 = 1; if (data & SDIO_CCCR_CAP_4BLS) card->cccr.bus_width = 1; if (cccr_version >= SDIO_CCCR_REV_1_10) { data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_POWER_CTRL, &ret); if (ret) goto out; if (data & SDIO_POWER_SMPC) card->cccr.power_ctrl = 1; } if (cccr_version >= SDIO_CCCR_REV_1_20) { data = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, &ret); if (ret) goto out; if (data & SDIO_SPEED_SHS) card->cccr.high_speed = 1; } out: return ret; } static rt_int32_t cistpl_funce_func0(struct rt_mmcsd_card *card, const rt_uint8_t *buf, rt_uint32_t size) { if (size < 0x04 || buf[0] != 0) return -RT_ERROR; /* TPLFE_FN0_BLK_SIZE */ card->cis.func0_blk_size = buf[1] | (buf[2] << 8); /* TPLFE_MAX_TRAN_SPEED */ card->cis.max_tran_speed = speed_value[(buf[3] >> 3) & 15] * speed_unit[buf[3] & 7]; return 0; } static rt_int32_t cistpl_funce_func(struct rt_sdio_function *func, const rt_uint8_t *buf, rt_uint32_t size) { rt_uint32_t version; rt_uint32_t min_size; version = func->card->cccr.sdio_version; min_size = (version == SDIO_SDIO_REV_1_00) ? 28 : 42; if (size < min_size || buf[0] != 1) return -RT_ERROR; /* TPLFE_MAX_BLK_SIZE */ func->max_blk_size = buf[12] | (buf[13] << 8); /* TPLFE_ENABLE_TIMEOUT_VAL, present in ver 1.1 and above */ if (version > SDIO_SDIO_REV_1_00) func->enable_timeout_val = (buf[28] | (buf[29] << 8)) * 10; else func->enable_timeout_val = 1000; /* 1000ms */ return 0; } static rt_int32_t sdio_read_cis(struct rt_sdio_function *func) { rt_int32_t ret; struct rt_sdio_function_tuple *curr, **prev; rt_uint32_t i, cisptr = 0; rt_uint8_t data; rt_uint8_t tpl_code, tpl_link; struct rt_mmcsd_card *card = func->card; struct rt_sdio_function *func0 = card->sdio_function[0]; RT_ASSERT(func0 != RT_NULL); for (i = 0; i < 3; i++) { data = sdio_io_readb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_CIS + i, &ret); if (ret) return ret; cisptr |= data << (i * 8); } prev = &func->tuples; do { tpl_code = sdio_io_readb(func0, cisptr++, &ret); if (ret) break; tpl_link = sdio_io_readb(func0, cisptr++, &ret); if (ret) break; if ((tpl_code == CISTPL_END) || (tpl_link == 0xff)) break; if (tpl_code == CISTPL_NULL) continue; curr = rt_malloc(sizeof(struct rt_sdio_function_tuple) + tpl_link); if (!curr) return -RT_ENOMEM; curr->data = (rt_uint8_t *)curr + sizeof(struct rt_sdio_function_tuple); for (i = 0; i < tpl_link; i++) { curr->data[i] = sdio_io_readb(func0, cisptr + i, &ret); if (ret) break; } if (ret) { rt_free(curr); break; } switch (tpl_code) { case CISTPL_MANFID: if (tpl_link < 4) { rt_kprintf("bad CISTPL_MANFID length\n"); break; } if (func->num != 0) { func->manufacturer = curr->data[0]; func->manufacturer |= curr->data[1] << 8; func->product = curr->data[2]; func->product |= curr->data[3] << 8; } else { card->cis.manufacturer = curr->data[0]; card->cis.manufacturer |= curr->data[1] << 8; card->cis.product = curr->data[2]; card->cis.product |= curr->data[3] << 8; } break; case CISTPL_FUNCE: if (func->num != 0) ret = cistpl_funce_func(func, curr->data, tpl_link); else ret = cistpl_funce_func0(card, curr->data, tpl_link); if (ret) { rt_kprintf("bad CISTPL_FUNCE size %u " "type %u\n", tpl_link, curr->data[0]); } break; case CISTPL_VERS_1: if (tpl_link < 2) { rt_kprintf("CISTPL_VERS_1 too short\n"); } break; default: /* this tuple is unknown to the core */ curr->next = RT_NULL; curr->code = tpl_code; curr->size = tpl_link; *prev = curr; prev = &curr->next; rt_kprintf( "function %d, CIS tuple code %#x, length %d\n", func->num, tpl_code, tpl_link); break; } cisptr += tpl_link; } while (1); /* * Link in all unknown tuples found in the common CIS so that * drivers don't have to go digging in two places. */ if (func->num != 0) *prev = func0->tuples; return ret; } void sdio_free_cis(struct rt_sdio_function *func) { struct rt_sdio_function_tuple *tuple, *tmp; struct rt_mmcsd_card *card = func->card; tuple = func->tuples; while (tuple && ((tuple != card->sdio_function[0]->tuples) || (!func->num))) { tmp = tuple; tuple = tuple->next; rt_free(tmp); } func->tuples = RT_NULL; } static rt_int32_t sdio_read_fbr(struct rt_sdio_function *func) { rt_int32_t ret; rt_uint8_t data; struct rt_sdio_function *func0 = func->card->sdio_function[0]; data = sdio_io_readb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_STD_FUNC_IF, &ret); if (ret) goto err; data &= 0x0f; if (data == 0x0f) { data = sdio_io_readb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_STD_IF_EXT, &ret); if (ret) goto err; } func->func_code = data; err: return ret; } static rt_int32_t sdio_initialize_function(struct rt_mmcsd_card *card, rt_uint32_t func_num) { rt_int32_t ret; struct rt_sdio_function *func; RT_ASSERT(func_num <= SDIO_MAX_FUNCTIONS); func = rt_malloc(sizeof(struct rt_sdio_function)); if (!func) { rt_kprintf("malloc rt_sdio_function failed\n"); ret = -RT_ENOMEM; goto err; } rt_memset(func, 0, sizeof(struct rt_sdio_function)); func->card = card; func->num = func_num; ret = sdio_read_fbr(func); if (ret) goto err1; ret = sdio_read_cis(func); if (ret) goto err1; card->sdio_function[func_num] = func; return 0; err1: sdio_free_cis(func); rt_free(func); card->sdio_function[func_num] = RT_NULL; err: return ret; } static rt_int32_t sdio_set_highspeed(struct rt_mmcsd_card *card) { rt_int32_t ret; rt_uint8_t speed; if (!(card->host->flags & MMCSD_SUP_HIGHSPEED)) return 0; if (!card->cccr.high_speed) return 0; speed = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, &ret); if (ret) return ret; speed |= SDIO_SPEED_EHS; ret = sdio_io_writeb(card->sdio_function[0], SDIO_REG_CCCR_SPEED, speed); if (ret) return ret; card->flags |= CARD_FLAG_HIGHSPEED; return 0; } static rt_int32_t sdio_set_bus_wide(struct rt_mmcsd_card *card) { rt_int32_t ret; rt_uint8_t busif; if (!(card->host->flags & MMCSD_BUSWIDTH_4)) return 0; if (card->cccr.low_speed && !card->cccr.bus_width) return 0; busif = sdio_io_readb(card->sdio_function[0], SDIO_REG_CCCR_BUS_IF, &ret); if (ret) return ret; busif |= SDIO_BUS_WIDTH_4BIT; ret = sdio_io_writeb(card->sdio_function[0], SDIO_REG_CCCR_BUS_IF, busif); if (ret) return ret; mmcsd_set_bus_width(card->host, MMCSD_BUS_WIDTH_4); return 0; } static rt_int32_t sdio_register_card(struct rt_mmcsd_card *card) { struct sdio_card *sc; struct sdio_driver *sd; rt_list_t *l; sc = rt_malloc(sizeof(struct sdio_card)); if (sc == RT_NULL) { rt_kprintf("malloc sdio card failed\n"); return -RT_ENOMEM; } sc->card = card; rt_list_insert_after(&sdio_cards, &sc->list); if (rt_list_isempty(&sdio_drivers)) { goto out; } for (l = (&sdio_drivers)->next; l != &sdio_drivers; l = l->next) { sd = (struct sdio_driver *)rt_list_entry(l, struct sdio_driver, list); if (sdio_match_card(card, sd->drv->id)) { sd->drv->probe(card); } } out: return 0; } static rt_int32_t sdio_init_card(struct rt_mmcsd_host *host, rt_uint32_t ocr) { rt_int32_t err = 0; rt_int32_t i, function_num; rt_uint32_t cmd5_resp; struct rt_mmcsd_card *card; err = sdio_io_send_op_cond(host, ocr, &cmd5_resp); if (err) goto err; if (controller_is_spi(host)) { err = mmcsd_spi_use_crc(host, host->spi_use_crc); if (err) goto err; } function_num = (cmd5_resp & 0x70000000) >> 28; card = rt_malloc(sizeof(struct rt_mmcsd_card)); if (!card) { rt_kprintf("malloc card failed\n"); err = -RT_ENOMEM; goto err; } rt_memset(card, 0, sizeof(struct rt_mmcsd_card)); card->card_type = CARD_TYPE_SDIO; card->sdio_function_num = function_num; card->host = host; host->card = card; card->sdio_function[0] = rt_malloc(sizeof(struct rt_sdio_function)); if (!card->sdio_function[0]) { rt_kprintf("malloc sdio_func0 failed\n"); err = -RT_ENOMEM; goto err1; } rt_memset(card->sdio_function[0], 0, sizeof(struct rt_sdio_function)); card->sdio_function[0]->card = card; card->sdio_function[0]->num = 0; if (!controller_is_spi(host)) { err = mmcsd_get_card_addr(host, &card->rca); if (err) goto err2; mmcsd_set_bus_mode(host, MMCSD_BUSMODE_PUSHPULL); } if (!controller_is_spi(host)) { err = mmcsd_select_card(card); if (err) goto err2; } err = sdio_read_cccr(card); if (err) goto err2; err = sdio_read_cis(card->sdio_function[0]); if (err) goto err2; err = sdio_set_highspeed(card); if (err) goto err2; if (card->flags & CARD_FLAG_HIGHSPEED) { mmcsd_set_clock(host, 50000000); } else { mmcsd_set_clock(host, card->cis.max_tran_speed); } err = sdio_set_bus_wide(card); if (err) goto err2; for (i = 1; i < function_num + 1; i++) { err = sdio_initialize_function(card, i); if (err) goto err3; } /* register sdio card */ err = sdio_register_card(card); if (err) { goto err3; } return 0; err3: if (host->card) { for (i = 1; i < host->card->sdio_function_num + 1; i++) { if (host->card->sdio_function[i]) { sdio_free_cis(host->card->sdio_function[i]); rt_free(host->card->sdio_function[i]); host->card->sdio_function[i] = RT_NULL; rt_free(host->card); host->card = RT_NULL; } } } err2: if (host->card && host->card->sdio_function[0]) { sdio_free_cis(host->card->sdio_function[0]); rt_free(host->card->sdio_function[0]); host->card->sdio_function[0] = RT_NULL; } err1: if (host->card) { rt_free(host->card); } err: rt_kprintf("error %d while initialising SDIO card\n", err); return err; } rt_int32_t init_sdio(struct rt_mmcsd_host *host, rt_uint32_t ocr) { rt_int32_t err; rt_uint32_t current_ocr; RT_ASSERT(host != RT_NULL); if (ocr & 0x7F) { rt_kprintf("Card ocr below the defined voltage rang.\n"); ocr &= ~0x7F; } if (ocr & VDD_165_195) { rt_kprintf("Can't support the low voltage SDIO card.\n"); ocr &= ~VDD_165_195; } current_ocr = mmcsd_select_voltage(host, ocr); if (!current_ocr) { err = -RT_ERROR; goto err; } err = sdio_init_card(host, current_ocr); if (err) goto remove_card; return 0; remove_card: rt_free(host->card); host->card = RT_NULL; err: rt_kprintf("init SDIO card failed\n"); return err; } static void sdio_irq_thread(void *param) { rt_int32_t i, ret; rt_uint8_t pending; struct rt_mmcsd_card *card; struct rt_mmcsd_host *host = (struct rt_mmcsd_host *)param; RT_ASSERT(host != RT_NULL); card = host->card; RT_ASSERT(card != RT_NULL); while (1) { if (rt_sem_take(host->sdio_irq_sem, RT_WAITING_FOREVER) == RT_EOK) { mmcsd_host_lock(host); pending = sdio_io_readb(host->card->sdio_function[0], SDIO_REG_CCCR_INT_PEND, &ret); if (ret) { mmcsd_dbg("error %d reading SDIO_REG_CCCR_INT_PEND\n", ret); goto out; } for (i = 1; i <= 7; i++) { if (pending & (1 << i)) { struct rt_sdio_function *func = card->sdio_function[i]; if (!func) { mmcsd_dbg("pending IRQ for " "non-existant function %d\n", func->num); goto out; } else if (func->irq_handler) { func->irq_handler(func); } else { mmcsd_dbg("pending IRQ with no register handler\n"); goto out; } } } out: mmcsd_host_unlock(host); if (host->flags & MMCSD_SUP_SDIO_IRQ) host->ops->enable_sdio_irq(host, 1); continue; } } } static rt_int32_t sdio_irq_thread_create(struct rt_mmcsd_card *card) { struct rt_mmcsd_host *host = card->host; /* init semaphore and create sdio irq processing thread */ if (!host->sdio_irq_num) { host->sdio_irq_num++; host->sdio_irq_sem = rt_sem_create("sdio_irq", 0, RT_IPC_FLAG_FIFO); RT_ASSERT(host->sdio_irq_sem != RT_NULL); host->sdio_irq_thread = rt_thread_create("sdio_irq", sdio_irq_thread, host, RT_SDIO_STACK_SIZE, RT_SDIO_THREAD_PREORITY, 20); if (host->sdio_irq_thread != RT_NULL) { rt_thread_startup(host->sdio_irq_thread); } } return 0; } static rt_int32_t sdio_irq_thread_delete(struct rt_mmcsd_card *card) { struct rt_mmcsd_host *host = card->host; RT_ASSERT(host->sdio_irq_num > 0); host->sdio_irq_num--; if (!host->sdio_irq_num) { if (host->flags & MMCSD_SUP_SDIO_IRQ) host->ops->enable_sdio_irq(host, 0); rt_sem_delete(host->sdio_irq_sem); host->sdio_irq_sem = RT_NULL; rt_thread_delete(host->sdio_irq_thread); host->sdio_irq_thread = RT_NULL; } return 0; } rt_int32_t sdio_attach_irq(struct rt_sdio_function *func, rt_sdio_irq_handler_t *handler) { rt_int32_t ret; rt_uint8_t reg; struct rt_sdio_function *func0; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->card != RT_NULL); func0 = func->card->sdio_function[0]; mmcsd_dbg("SDIO: enabling IRQ for function %d\n", func->num); if (func->irq_handler) { mmcsd_dbg("SDIO: IRQ for already in use.\n"); return -RT_EBUSY; } reg = sdio_io_readb(func0, SDIO_REG_CCCR_INT_EN, &ret); if (ret) return ret; reg |= 1 << func->num; reg |= 1; /* Master interrupt enable */ ret = sdio_io_writeb(func0, SDIO_REG_CCCR_INT_EN, reg); if (ret) return ret; func->irq_handler = handler; ret = sdio_irq_thread_create(func->card); if (ret) func->irq_handler = RT_NULL; return ret; } rt_int32_t sdio_detach_irq(struct rt_sdio_function *func) { rt_int32_t ret; rt_uint8_t reg; struct rt_sdio_function *func0; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->card != RT_NULL); func0 = func->card->sdio_function[0]; mmcsd_dbg("SDIO: disabling IRQ for function %d\n", func->num); if (func->irq_handler) { func->irq_handler = RT_NULL; sdio_irq_thread_delete(func->card); } reg = sdio_io_readb(func0, SDIO_REG_CCCR_INT_EN, &ret); if (ret) return ret; reg &= ~(1 << func->num); /* Disable master interrupt with the last function interrupt */ if (!(reg & 0xFE)) reg = 0; ret = sdio_io_writeb(func0, SDIO_REG_CCCR_INT_EN, reg); if (ret) return ret; return 0; } void sdio_irq_wakeup(struct rt_mmcsd_host *host) { host->ops->enable_sdio_irq(host, 0); rt_sem_release(host->sdio_irq_sem); } rt_int32_t sdio_enable_func(struct rt_sdio_function *func) { rt_int32_t ret; rt_uint8_t reg; rt_uint32_t timeout; struct rt_sdio_function *func0; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->card != RT_NULL); func0 = func->card->sdio_function[0]; mmcsd_dbg("SDIO: enabling function %d\n", func->num); reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_EN, &ret); if (ret) goto err; reg |= 1 << func->num; ret = sdio_io_writeb(func0, SDIO_REG_CCCR_IO_EN, reg); if (ret) goto err; timeout = rt_tick_get() + func->enable_timeout_val * 1000 / RT_TICK_PER_SECOND; while (1) { reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_RDY, &ret); if (ret) goto err; if (reg & (1 << func->num)) break; ret = -RT_ETIMEOUT; if (rt_tick_get() > timeout) goto err; } mmcsd_dbg("SDIO: enabled function successfull\n"); return 0; err: mmcsd_dbg("SDIO: failed to enable function %d\n", func->num); return ret; } rt_int32_t sdio_disable_func(struct rt_sdio_function *func) { rt_int32_t ret; rt_uint8_t reg; struct rt_sdio_function *func0; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->card != RT_NULL); func0 = func->card->sdio_function[0]; mmcsd_dbg("SDIO: disabling function %d\n", func->num); reg = sdio_io_readb(func0, SDIO_REG_CCCR_IO_EN, &ret); if (ret) goto err; reg &= ~(1 << func->num); ret = sdio_io_writeb(func0, SDIO_REG_CCCR_IO_EN, reg); if (ret) goto err; mmcsd_dbg("SDIO: disabled function successfull\n"); return 0; err: mmcsd_dbg("SDIO: failed to disable function %d\n", func->num); return -RT_EIO; } rt_int32_t sdio_set_block_size(struct rt_sdio_function *func, rt_uint32_t blksize) { rt_int32_t ret; struct rt_sdio_function *func0 = func->card->sdio_function[0]; if (blksize > func->card->host->max_blk_size) return -RT_ERROR; if (blksize == 0) { blksize = MIN(func->max_blk_size, func->card->host->max_blk_size); blksize = MIN(blksize, 512u); } ret = sdio_io_writeb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_BLKSIZE, blksize & 0xff); if (ret) return ret; ret = sdio_io_writeb(func0, SDIO_REG_FBR_BASE(func->num) + SDIO_REG_FBR_BLKSIZE + 1, (blksize >> 8) & 0xff); if (ret) return ret; func->cur_blk_size = blksize; return 0; } rt_inline rt_int32_t sdio_match_card(struct rt_mmcsd_card *card, const struct rt_sdio_device_id *id) { if ((id->manufacturer != SDIO_ANY_MAN_ID) && (id->manufacturer != card->cis.manufacturer)) return 0; if ((id->product != SDIO_ANY_PROD_ID) && (id->product != card->cis.product)) return 0; return 1; } static struct rt_mmcsd_card *sdio_match_driver(struct rt_sdio_device_id *id) { rt_list_t *l; struct sdio_card *sc; struct rt_mmcsd_card *card; for (l = (&sdio_cards)->next; l != &sdio_cards; l = l->next) { sc = (struct sdio_card *)rt_list_entry(l, struct sdio_card, list); card = sc->card; if (sdio_match_card(card, id)) { return card; } } return RT_NULL; } rt_int32_t sdio_register_driver(struct rt_sdio_driver *driver) { struct sdio_driver *sd; struct rt_mmcsd_card *card; sd = rt_malloc(sizeof(struct sdio_driver)); if (sd == RT_NULL) { rt_kprintf("malloc sdio driver failed\n"); return -RT_ENOMEM; } sd->drv = driver; rt_list_insert_after(&sdio_drivers, &sd->list); if (!rt_list_isempty(&sdio_cards)) { card = sdio_match_driver(driver->id); if (card != RT_NULL) { driver->probe(card); } } return 0; } rt_int32_t sdio_unregister_driver(struct rt_sdio_driver *driver) { rt_list_t *l; struct sdio_driver *sd = RT_NULL; struct rt_mmcsd_card *card; for (l = (&sdio_drivers)->next; l != &sdio_drivers; l = l->next) { sd = (struct sdio_driver *)rt_list_entry(l, struct sdio_driver, list); if (sd->drv != driver) { sd = RT_NULL; } } if (sd == RT_NULL) { rt_kprintf("SDIO driver %s not register\n", driver->name); return -RT_ERROR; } if (!rt_list_isempty(&sdio_cards)) { card = sdio_match_driver(driver->id); if (card != RT_NULL) { driver->remove(card); rt_list_remove(&sd->list); rt_free(sd); } } return 0; } void rt_sdio_init(void) { rt_list_init(&sdio_cards); rt_list_init(&sdio_drivers); }