package downloader import ( "encoding/binary" "errors" "fmt" "math/big" "sync/atomic" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/event" ) var ( knownHash = common.Hash{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} unknownHash = common.Hash{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} bannedHash = common.Hash{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3} genesis = createBlock(1, common.Hash{}, knownHash) ) // idCounter is used by the createHashes method the generate deterministic but unique hashes var idCounter = int64(2) // #1 is the genesis block // createHashes generates a batch of hashes rooted at a specific point in the chain. func createHashes(amount int, root common.Hash) (hashes []common.Hash) { hashes = make([]common.Hash, amount+1) hashes[len(hashes)-1] = root for i := 0; i < len(hashes)-1; i++ { binary.BigEndian.PutUint64(hashes[i][:8], uint64(idCounter)) idCounter++ } return } // createBlock assembles a new block at the given chain height. func createBlock(i int, parent, hash common.Hash) *types.Block { header := &types.Header{Number: big.NewInt(int64(i))} block := types.NewBlockWithHeader(header) block.HeaderHash = hash block.ParentHeaderHash = parent return block } // copyBlock makes a deep copy of a block suitable for local modifications. func copyBlock(block *types.Block) *types.Block { return createBlock(int(block.Number().Int64()), block.ParentHeaderHash, block.HeaderHash) } func createBlocksFromHashes(hashes []common.Hash) map[common.Hash]*types.Block { blocks := make(map[common.Hash]*types.Block) for i := 0; i < len(hashes); i++ { parent := knownHash if i < len(hashes)-1 { parent = hashes[i+1] } blocks[hashes[i]] = createBlock(len(hashes)-i, parent, hashes[i]) } return blocks } type downloadTester struct { downloader *Downloader ownHashes []common.Hash // Hash chain belonging to the tester ownBlocks map[common.Hash]*types.Block // Blocks belonging to the tester peerHashes map[string][]common.Hash // Hash chain belonging to different test peers peerBlocks map[string]map[common.Hash]*types.Block // Blocks belonging to different test peers maxHashFetch int // Overrides the maximum number of retrieved hashes } func newTester() *downloadTester { tester := &downloadTester{ ownHashes: []common.Hash{knownHash}, ownBlocks: map[common.Hash]*types.Block{knownHash: genesis}, peerHashes: make(map[string][]common.Hash), peerBlocks: make(map[string]map[common.Hash]*types.Block), } var mux event.TypeMux downloader := New(&mux, tester.hasBlock, tester.getBlock, tester.insertChain, tester.dropPeer) tester.downloader = downloader return tester } // sync starts synchronizing with a remote peer, blocking until it completes. func (dl *downloadTester) sync(id string) error { err := dl.downloader.synchronise(id, dl.peerHashes[id][0]) for atomic.LoadInt32(&dl.downloader.processing) == 1 { time.Sleep(time.Millisecond) } return err } // hasBlock checks if a block is pres ent in the testers canonical chain. func (dl *downloadTester) hasBlock(hash common.Hash) bool { return dl.getBlock(hash) != nil } // getBlock retrieves a block from the testers canonical chain. func (dl *downloadTester) getBlock(hash common.Hash) *types.Block { return dl.ownBlocks[hash] } // insertChain injects a new batch of blocks into the simulated chain. func (dl *downloadTester) insertChain(blocks types.Blocks) (int, error) { for i, block := range blocks { if _, ok := dl.ownBlocks[block.ParentHash()]; !ok { return i, errors.New("unknown parent") } dl.ownHashes = append(dl.ownHashes, block.Hash()) dl.ownBlocks[block.Hash()] = block } return len(blocks), nil } // newPeer registers a new block download source into the downloader. func (dl *downloadTester) newPeer(id string, hashes []common.Hash, blocks map[common.Hash]*types.Block) error { return dl.newSlowPeer(id, hashes, blocks, 0) } // newSlowPeer registers a new block download source into the downloader, with a // specific delay time on processing the network packets sent to it, simulating // potentially slow network IO. func (dl *downloadTester) newSlowPeer(id string, hashes []common.Hash, blocks map[common.Hash]*types.Block, delay time.Duration) error { err := dl.downloader.RegisterPeer(id, hashes[0], dl.peerGetHashesFn(id, delay), dl.peerGetBlocksFn(id, delay)) if err == nil { // Assign the owned hashes and blocks to the peer (deep copy) dl.peerHashes[id] = make([]common.Hash, len(hashes)) copy(dl.peerHashes[id], hashes) dl.peerBlocks[id] = make(map[common.Hash]*types.Block) for hash, block := range blocks { dl.peerBlocks[id][hash] = copyBlock(block) } } return err } // dropPeer simulates a hard peer removal from the connection pool. func (dl *downloadTester) dropPeer(id string) { delete(dl.peerHashes, id) delete(dl.peerBlocks, id) dl.downloader.UnregisterPeer(id) } // peerGetBlocksFn constructs a getHashes function associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of hashes from the particularly requested peer. func (dl *downloadTester) peerGetHashesFn(id string, delay time.Duration) func(head common.Hash) error { return func(head common.Hash) error { time.Sleep(delay) limit := MaxHashFetch if dl.maxHashFetch > 0 { limit = dl.maxHashFetch } // Gather the next batch of hashes hashes := dl.peerHashes[id] result := make([]common.Hash, 0, limit) for i, hash := range hashes { if hash == head { i++ for len(result) < cap(result) && i < len(hashes) { result = append(result, hashes[i]) i++ } break } } // Delay delivery a bit to allow attacks to unfold go func() { time.Sleep(time.Millisecond) dl.downloader.DeliverHashes(id, result) }() return nil } } // peerGetBlocksFn constructs a getBlocks function associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of blocks from the particularly requested peer. func (dl *downloadTester) peerGetBlocksFn(id string, delay time.Duration) func([]common.Hash) error { return func(hashes []common.Hash) error { time.Sleep(delay) blocks := dl.peerBlocks[id] result := make([]*types.Block, 0, len(hashes)) for _, hash := range hashes { if block, ok := blocks[hash]; ok { result = append(result, block) } } go dl.downloader.DeliverBlocks(id, result) return nil } } // Tests that simple synchronization, without throttling from a good peer works. func TestSynchronisation(t *testing.T) { // Create a small enough block chain to download and the tester targetBlocks := blockCacheLimit - 15 hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) tester := newTester() tester.newPeer("peer", hashes, blocks) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("peer"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } } // Tests that an inactive downloader will not accept incoming hashes and blocks. func TestInactiveDownloader(t *testing.T) { tester := newTester() // Check that neither hashes nor blocks are accepted if err := tester.downloader.DeliverHashes("bad peer", []common.Hash{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } if err := tester.downloader.DeliverBlocks("bad peer", []*types.Block{}); err != errNoSyncActive { t.Errorf("error mismatch: have %v, want %v", err, errNoSyncActive) } } // Tests that a canceled download wipes all previously accumulated state. func TestCancel(t *testing.T) { // Create a small enough block chain to download and the tester targetBlocks := blockCacheLimit - 15 hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) tester := newTester() tester.newPeer("peer", hashes, blocks) // Make sure canceling works with a pristine downloader tester.downloader.Cancel() hashCount, blockCount := tester.downloader.queue.Size() if hashCount > 0 || blockCount > 0 { t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount) } // Synchronise with the peer, but cancel afterwards if err := tester.sync("peer"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } tester.downloader.Cancel() hashCount, blockCount = tester.downloader.queue.Size() if hashCount > 0 || blockCount > 0 { t.Errorf("block or hash count mismatch: %d hashes, %d blocks, want 0", hashCount, blockCount) } } // Tests that if a large batch of blocks are being downloaded, it is throttled // until the cached blocks are retrieved. func TestThrottling(t *testing.T) { // Create a long block chain to download and the tester targetBlocks := 8 * blockCacheLimit hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) tester := newTester() tester.newPeer("peer", hashes, blocks) // Wrap the importer to allow stepping done := make(chan int) tester.downloader.insertChain = func(blocks types.Blocks) (int, error) { n, err := tester.insertChain(blocks) done <- n return n, err } // Start a synchronisation concurrently errc := make(chan error) go func() { errc <- tester.sync("peer") }() // Iteratively take some blocks, always checking the retrieval count for len(tester.ownBlocks) < targetBlocks+1 { // Wait a bit for sync to throttle itself var cached int for start := time.Now(); time.Since(start) < 3*time.Second; { time.Sleep(25 * time.Millisecond) cached = len(tester.downloader.queue.blockPool) if cached == blockCacheLimit || len(tester.ownBlocks)+cached == targetBlocks+1 { break } } // Make sure we filled up the cache, then exhaust it time.Sleep(25 * time.Millisecond) // give it a chance to screw up if cached != blockCacheLimit && len(tester.ownBlocks)+cached < targetBlocks+1 { t.Fatalf("block count mismatch: have %v, want %v", cached, blockCacheLimit) } <-done // finish previous blocking import for cached > maxBlockProcess { cached -= <-done } time.Sleep(25 * time.Millisecond) // yield to the insertion } <-done // finish the last blocking import // Check that we haven't pulled more blocks than available if len(tester.ownBlocks) > targetBlocks+1 { t.Fatalf("target block count mismatch: have %v, want %v", len(tester.ownBlocks), targetBlocks+1) } if err := <-errc; err != nil { t.Fatalf("block synchronization failed: %v", err) } } // Tests that synchronisation from multiple peers works as intended (multi thread sanity test). func TestMultiSynchronisation(t *testing.T) { // Create various peers with various parts of the chain targetPeers := 16 targetBlocks := targetPeers*blockCacheLimit - 15 hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) tester := newTester() for i := 0; i < targetPeers; i++ { id := fmt.Sprintf("peer #%d", i) tester.newPeer(id, hashes[i*blockCacheLimit:], blocks) } // Synchronise with the middle peer and make sure half of the blocks were retrieved id := fmt.Sprintf("peer #%d", targetPeers/2) if err := tester.sync(id); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != len(tester.peerHashes[id]) { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, len(tester.peerHashes[id])) } // Synchronise with the best peer and make sure everything is retrieved if err := tester.sync("peer #0"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } } // Tests that synchronising with a peer who's very slow at network IO does not // stall the other peers in the system. func TestSlowSynchronisation(t *testing.T) { tester := newTester() // Create a batch of blocks, with a slow and a full speed peer targetCycles := 2 targetBlocks := targetCycles*blockCacheLimit - 15 targetIODelay := 500 * time.Millisecond hashes := createHashes(targetBlocks, knownHash) blocks := createBlocksFromHashes(hashes) tester.newSlowPeer("fast", hashes, blocks, 0) tester.newSlowPeer("slow", hashes, blocks, targetIODelay) // Try to sync with the peers (pull hashes from fast) start := time.Now() if err := tester.sync("fast"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if imported := len(tester.ownBlocks); imported != targetBlocks+1 { t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) } // Check that the slow peer got hit at most once per block-cache-size import limit := time.Duration(targetCycles+1) * targetIODelay if delay := time.Since(start); delay >= limit { t.Fatalf("synchronisation exceeded delay limit: have %v, want %v", delay, limit) } } // Tests that if a peer returns an invalid chain with a block pointing to a non- // existing parent, it is correctly detected and handled. func TestNonExistingParentAttack(t *testing.T) { tester := newTester() // Forge a single-link chain with a forged header hashes := createHashes(1, knownHash) blocks := createBlocksFromHashes(hashes) tester.newPeer("valid", hashes, blocks) hashes = createHashes(1, knownHash) blocks = createBlocksFromHashes(hashes) blocks[hashes[0]].ParentHeaderHash = unknownHash tester.newPeer("attack", hashes, blocks) // Try and sync with the malicious node and check that it fails if err := tester.sync("attack"); err == nil { t.Fatalf("block synchronization succeeded") } if tester.hasBlock(hashes[0]) { t.Fatalf("tester accepted unknown-parent block: %v", blocks[hashes[0]]) } // Try to synchronize with the valid chain and make sure it succeeds if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } if !tester.hasBlock(tester.peerHashes["valid"][0]) { t.Fatalf("tester didn't accept known-parent block: %v", tester.peerBlocks["valid"][hashes[0]]) } } // Tests that if a malicious peers keeps sending us repeating hashes, we don't // loop indefinitely. func TestRepeatingHashAttack(t *testing.T) { // TODO: Is this thing valid?? tester := newTester() // Create a valid chain, but drop the last link hashes := createHashes(blockCacheLimit, knownHash) blocks := createBlocksFromHashes(hashes) tester.newPeer("valid", hashes, blocks) tester.newPeer("attack", hashes[:len(hashes)-1], blocks) // Try and sync with the malicious node errc := make(chan error) go func() { errc <- tester.sync("attack") }() // Make sure that syncing returns and does so with a failure select { case <-time.After(time.Second): t.Fatalf("synchronisation blocked") case err := <-errc: if err == nil { t.Fatalf("synchronisation succeeded") } } // Ensure that a valid chain can still pass sync if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } } // Tests that if a malicious peers returns a non-existent block hash, it should // eventually time out and the sync reattempted. func TestNonExistingBlockAttack(t *testing.T) { tester := newTester() // Create a valid chain, but forge the last link hashes := createHashes(blockCacheLimit, knownHash) blocks := createBlocksFromHashes(hashes) tester.newPeer("valid", hashes, blocks) hashes[len(hashes)/2] = unknownHash tester.newPeer("attack", hashes, blocks) // Try and sync with the malicious node and check that it fails if err := tester.sync("attack"); err != errPeersUnavailable { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errPeersUnavailable) } // Ensure that a valid chain can still pass sync if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } } // Tests that if a malicious peer is returning hashes in a weird order, that the // sync throttler doesn't choke on them waiting for the valid blocks. func TestInvalidHashOrderAttack(t *testing.T) { tester := newTester() // Create a valid long chain, but reverse some hashes within hashes := createHashes(4*blockCacheLimit, knownHash) blocks := createBlocksFromHashes(hashes) tester.newPeer("valid", hashes, blocks) chunk1 := make([]common.Hash, blockCacheLimit) chunk2 := make([]common.Hash, blockCacheLimit) copy(chunk1, hashes[blockCacheLimit:2*blockCacheLimit]) copy(chunk2, hashes[2*blockCacheLimit:3*blockCacheLimit]) copy(hashes[2*blockCacheLimit:], chunk1) copy(hashes[blockCacheLimit:], chunk2) tester.newPeer("attack", hashes, blocks) // Try and sync with the malicious node and check that it fails if err := tester.sync("attack"); err != errInvalidChain { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain) } // Ensure that a valid chain can still pass sync if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } } // Tests that if a malicious peer makes up a random hash chain and tries to push // indefinitely, it actually gets caught with it. func TestMadeupHashChainAttack(t *testing.T) { tester := newTester() blockSoftTTL = 100 * time.Millisecond crossCheckCycle = 25 * time.Millisecond // Create a long chain of hashes without backing blocks hashes := createHashes(4*blockCacheLimit, knownHash) blocks := createBlocksFromHashes(hashes) tester.newPeer("valid", hashes, blocks) tester.newPeer("attack", createHashes(1024*blockCacheLimit, knownHash), nil) // Try and sync with the malicious node and check that it fails if err := tester.sync("attack"); err != errCrossCheckFailed { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed) } // Ensure that a valid chain can still pass sync if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } } // Tests that if a malicious peer makes up a random hash chain, and tries to push // indefinitely, one hash at a time, it actually gets caught with it. The reason // this is separate from the classical made up chain attack is that sending hashes // one by one prevents reliable block/parent verification. func TestMadeupHashChainDrippingAttack(t *testing.T) { // Create a random chain of hashes to drip hashes := createHashes(16*blockCacheLimit, knownHash) tester := newTester() // Try and sync with the attacker, one hash at a time tester.maxHashFetch = 1 tester.newPeer("attack", hashes, nil) if err := tester.sync("attack"); err != errStallingPeer { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer) } } // Tests that if a malicious peer makes up a random block chain, and tried to // push indefinitely, it actually gets caught with it. func TestMadeupBlockChainAttack(t *testing.T) { defaultBlockTTL := blockSoftTTL defaultCrossCheckCycle := crossCheckCycle blockSoftTTL = 100 * time.Millisecond crossCheckCycle = 25 * time.Millisecond // Create a long chain of blocks and simulate an invalid chain by dropping every second hashes := createHashes(16*blockCacheLimit, knownHash) blocks := createBlocksFromHashes(hashes) gapped := make([]common.Hash, len(hashes)/2) for i := 0; i < len(gapped); i++ { gapped[i] = hashes[2*i] } // Try and sync with the malicious node and check that it fails tester := newTester() tester.newPeer("attack", gapped, blocks) if err := tester.sync("attack"); err != errCrossCheckFailed { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed) } // Ensure that a valid chain can still pass sync blockSoftTTL = defaultBlockTTL crossCheckCycle = defaultCrossCheckCycle tester.newPeer("valid", hashes, blocks) if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } } // Advanced form of the above forged blockchain attack, where not only does the // attacker make up a valid hashes for random blocks, but also forges the block // parents to point to existing hashes. func TestMadeupParentBlockChainAttack(t *testing.T) { tester := newTester() defaultBlockTTL := blockSoftTTL defaultCrossCheckCycle := crossCheckCycle blockSoftTTL = 100 * time.Millisecond crossCheckCycle = 25 * time.Millisecond // Create a long chain of blocks and simulate an invalid chain by dropping every second hashes := createHashes(16*blockCacheLimit, knownHash) blocks := createBlocksFromHashes(hashes) tester.newPeer("valid", hashes, blocks) for _, block := range blocks { block.ParentHeaderHash = knownHash // Simulate pointing to already known hash } tester.newPeer("attack", hashes, blocks) // Try and sync with the malicious node and check that it fails if err := tester.sync("attack"); err != errCrossCheckFailed { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed) } // Ensure that a valid chain can still pass sync blockSoftTTL = defaultBlockTTL crossCheckCycle = defaultCrossCheckCycle if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } } // Tests that if one/multiple malicious peers try to feed a banned blockchain to // the downloader, it will not keep refetching the same chain indefinitely, but // gradually block pieces of it, until it's head is also blocked. func TestBannedChainStarvationAttack(t *testing.T) { // Create the tester and ban the selected hash tester := newTester() tester.downloader.banned.Add(bannedHash) // Construct a valid chain, for it and ban the fork hashes := createHashes(8*blockCacheLimit, knownHash) blocks := createBlocksFromHashes(hashes) tester.newPeer("valid", hashes, blocks) fork := len(hashes)/2 - 23 hashes = append(createHashes(4*blockCacheLimit, bannedHash), hashes[fork:]...) blocks = createBlocksFromHashes(hashes) tester.newPeer("attack", hashes, blocks) // Iteratively try to sync, and verify that the banned hash list grows until // the head of the invalid chain is blocked too. for banned := tester.downloader.banned.Size(); ; { // Try to sync with the attacker, check hash chain failure if err := tester.sync("attack"); err != errInvalidChain { if tester.downloader.banned.Has(hashes[0]) && err == errBannedHead { break } t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain) } // Check that the ban list grew with at least 1 new item, or all banned bans := tester.downloader.banned.Size() if bans < banned+1 { t.Fatalf("ban count mismatch: have %v, want %v+", bans, banned+1) } banned = bans } // Check that after banning an entire chain, bad peers get dropped if err := tester.newPeer("new attacker", hashes, blocks); err != errBannedHead { t.Fatalf("peer registration mismatch: have %v, want %v", err, errBannedHead) } if peer := tester.downloader.peers.Peer("new attacker"); peer != nil { t.Fatalf("banned attacker registered: %v", peer) } // Ensure that a valid chain can still pass sync if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } } // Tests that if a peer sends excessively many/large invalid chains that are // gradually banned, it will have an upper limit on the consumed memory and also // the origin bad hashes will not be evacuated. func TestBannedChainMemoryExhaustionAttack(t *testing.T) { // Create the tester and ban the selected hash tester := newTester() tester.downloader.banned.Add(bannedHash) // Reduce the test size a bit defaultMaxBlockFetch := MaxBlockFetch defaultMaxBannedHashes := maxBannedHashes MaxBlockFetch = 4 maxBannedHashes = 256 // Construct a banned chain with more chunks than the ban limit hashes := createHashes(8*blockCacheLimit, knownHash) blocks := createBlocksFromHashes(hashes) tester.newPeer("valid", hashes, blocks) fork := len(hashes)/2 - 23 hashes = append(createHashes(maxBannedHashes*MaxBlockFetch, bannedHash), hashes[fork:]...) blocks = createBlocksFromHashes(hashes) tester.newPeer("attack", hashes, blocks) // Iteratively try to sync, and verify that the banned hash list grows until // the head of the invalid chain is blocked too. for { // Try to sync with the attacker, check hash chain failure if err := tester.sync("attack"); err != errInvalidChain { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain) } // Short circuit if the entire chain was banned if tester.downloader.banned.Has(hashes[0]) { break } // Otherwise ensure we never exceed the memory allowance and the hard coded bans are untouched if bans := tester.downloader.banned.Size(); bans > maxBannedHashes { t.Fatalf("ban cap exceeded: have %v, want max %v", bans, maxBannedHashes) } for hash, _ := range core.BadHashes { if !tester.downloader.banned.Has(hash) { t.Fatalf("hard coded ban evacuated: %x", hash) } } } // Ensure that a valid chain can still pass sync MaxBlockFetch = defaultMaxBlockFetch maxBannedHashes = defaultMaxBannedHashes if err := tester.sync("valid"); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } } // Tests that misbehaving peers are disconnected, whilst behaving ones are not. func TestHashAttackerDropping(t *testing.T) { // Define the disconnection requirement for individual hash fetch errors tests := []struct { result error drop bool }{ {nil, false}, // Sync succeeded, all is well {errBusy, false}, // Sync is already in progress, no problem {errUnknownPeer, false}, // Peer is unknown, was already dropped, don't double drop {errBadPeer, true}, // Peer was deemed bad for some reason, drop it {errStallingPeer, true}, // Peer was detected to be stalling, drop it {errBannedHead, true}, // Peer's head hash is a known bad hash, drop it {errNoPeers, false}, // No peers to download from, soft race, no issue {errPendingQueue, false}, // There are blocks still cached, wait to exhaust, no issue {errTimeout, true}, // No hashes received in due time, drop the peer {errEmptyHashSet, true}, // No hashes were returned as a response, drop as it's a dead end {errPeersUnavailable, true}, // Nobody had the advertised blocks, drop the advertiser {errInvalidChain, true}, // Hash chain was detected as invalid, definitely drop {errCrossCheckFailed, true}, // Hash-origin failed to pass a block cross check, drop {errCancelHashFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelBlockFetch, false}, // Synchronisation was canceled, origin may be innocent, don't drop {errCancelChainImport, false}, // Synchronisation was canceled, origin may be innocent, don't drop } // Run the tests and check disconnection status tester := newTester() for i, tt := range tests { // Register a new peer and ensure it's presence id := fmt.Sprintf("test %d", i) if err := tester.newPeer(id, []common.Hash{knownHash}, nil); err != nil { t.Fatalf("test %d: failed to register new peer: %v", i, err) } if _, ok := tester.peerHashes[id]; !ok { t.Fatalf("test %d: registered peer not found", i) } // Simulate a synchronisation and check the required result tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result } tester.downloader.Synchronise(id, knownHash) if _, ok := tester.peerHashes[id]; !ok != tt.drop { t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop) } } } // Tests that feeding bad blocks will result in a peer drop. func TestBlockAttackerDropping(t *testing.T) { // Define the disconnection requirement for individual block import errors tests := []struct { failure bool drop bool }{{true, true}, {false, false}} // Run the tests and check disconnection status tester := newTester() for i, tt := range tests { // Register a new peer and ensure it's presence id := fmt.Sprintf("test %d", i) if err := tester.newPeer(id, []common.Hash{common.Hash{}}, nil); err != nil { t.Fatalf("test %d: failed to register new peer: %v", i, err) } if _, ok := tester.peerHashes[id]; !ok { t.Fatalf("test %d: registered peer not found", i) } // Assemble a good or bad block, depending of the test raw := createBlock(1, knownHash, common.Hash{}) if tt.failure { raw = createBlock(1, unknownHash, common.Hash{}) } block := &Block{OriginPeer: id, RawBlock: raw} // Simulate block processing and check the result tester.downloader.queue.blockCache[0] = block tester.downloader.process() if _, ok := tester.peerHashes[id]; !ok != tt.drop { t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.failure, !ok, tt.drop) } } }