// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package core implements the Ethereum consensus protocol. package core import ( "errors" "fmt" "io" "math/big" mrand "math/rand" "runtime" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/pow" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "github.com/hashicorp/golang-lru" ) var ( blockInsertTimer = metrics.NewTimer("chain/inserts") ErrNoGenesis = errors.New("Genesis not found in chain") ) const ( bodyCacheLimit = 256 blockCacheLimit = 256 maxFutureBlocks = 256 maxTimeFutureBlocks = 30 // must be bumped when consensus algorithm is changed, this forces the upgradedb // command to be run (forces the blocks to be imported again using the new algorithm) BlockChainVersion = 3 badBlockLimit = 10 ) // BlockChain represents the canonical chain given a database with a genesis // block. The Blockchain manages chain imports, reverts, chain reorganisations. // // Importing blocks in to the block chain happens according to the set of rules // defined by the two stage Validator. Processing of blocks is done using the // Processor which processes the included transaction. The validation of the state // is done in the second part of the Validator. Failing results in aborting of // the import. // // The BlockChain also helps in returning blocks from **any** chain included // in the database as well as blocks that represents the canonical chain. It's // important to note that GetBlock can return any block and does not need to be // included in the canonical one where as GetBlockByNumber always represents the // canonical chain. type BlockChain struct { config *params.ChainConfig // chain & network configuration hc *HeaderChain chainDb ethdb.Database eventMux *event.TypeMux genesisBlock *types.Block mu sync.RWMutex // global mutex for locking chain operations chainmu sync.RWMutex // blockchain insertion lock procmu sync.RWMutex // block processor lock checkpoint int // checkpoint counts towards the new checkpoint currentBlock *types.Block // Current head of the block chain currentFastBlock *types.Block // Current head of the fast-sync chain (may be above the block chain!) stateCache *state.StateDB // State database to reuse between imports (contains state cache) bodyCache *lru.Cache // Cache for the most recent block bodies bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format blockCache *lru.Cache // Cache for the most recent entire blocks futureBlocks *lru.Cache // future blocks are blocks added for later processing quit chan struct{} // blockchain quit channel running int32 // running must be called atomically // procInterrupt must be atomically called procInterrupt int32 // interrupt signaler for block processing wg sync.WaitGroup // chain processing wait group for shutting down pow pow.PoW processor Processor // block processor interface validator Validator // block and state validator interface vmConfig vm.Config badBlocks *lru.Cache // Bad block cache } // NewBlockChain returns a fully initialised block chain using information // available in the database. It initialiser the default Ethereum Validator and // Processor. func NewBlockChain(chainDb ethdb.Database, config *params.ChainConfig, pow pow.PoW, mux *event.TypeMux, vmConfig vm.Config) (*BlockChain, error) { bodyCache, _ := lru.New(bodyCacheLimit) bodyRLPCache, _ := lru.New(bodyCacheLimit) blockCache, _ := lru.New(blockCacheLimit) futureBlocks, _ := lru.New(maxFutureBlocks) badBlocks, _ := lru.New(badBlockLimit) bc := &BlockChain{ config: config, chainDb: chainDb, eventMux: mux, quit: make(chan struct{}), bodyCache: bodyCache, bodyRLPCache: bodyRLPCache, blockCache: blockCache, futureBlocks: futureBlocks, pow: pow, vmConfig: vmConfig, badBlocks: badBlocks, } bc.SetValidator(NewBlockValidator(config, bc, pow)) bc.SetProcessor(NewStateProcessor(config, bc)) gv := func() HeaderValidator { return bc.Validator() } var err error bc.hc, err = NewHeaderChain(chainDb, config, gv, bc.getProcInterrupt) if err != nil { return nil, err } bc.genesisBlock = bc.GetBlockByNumber(0) if bc.genesisBlock == nil { return nil, ErrNoGenesis } if err := bc.loadLastState(); err != nil { return nil, err } // Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain for hash := range BadHashes { if header := bc.GetHeaderByHash(hash); header != nil { // get the canonical block corresponding to the offending header's number headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64()) // make sure the headerByNumber (if present) is in our current canonical chain if headerByNumber != nil && headerByNumber.Hash() == header.Hash() { log.Error(fmt.Sprintf("Found bad hash, rewinding chain to block #%d [%x…]", header.Number, header.ParentHash[:4])) bc.SetHead(header.Number.Uint64() - 1) log.Error(fmt.Sprint("Chain rewind was successful, resuming normal operation")) } } } // Take ownership of this particular state go bc.update() return bc, nil } func (self *BlockChain) getProcInterrupt() bool { return atomic.LoadInt32(&self.procInterrupt) == 1 } // loadLastState loads the last known chain state from the database. This method // assumes that the chain manager mutex is held. func (self *BlockChain) loadLastState() error { // Restore the last known head block head := GetHeadBlockHash(self.chainDb) if head == (common.Hash{}) { // Corrupt or empty database, init from scratch self.Reset() } else { if block := self.GetBlockByHash(head); block != nil { // Block found, set as the current head self.currentBlock = block } else { // Corrupt or empty database, init from scratch self.Reset() } } // Restore the last known head header currentHeader := self.currentBlock.Header() if head := GetHeadHeaderHash(self.chainDb); head != (common.Hash{}) { if header := self.GetHeaderByHash(head); header != nil { currentHeader = header } } self.hc.SetCurrentHeader(currentHeader) // Restore the last known head fast block self.currentFastBlock = self.currentBlock if head := GetHeadFastBlockHash(self.chainDb); head != (common.Hash{}) { if block := self.GetBlockByHash(head); block != nil { self.currentFastBlock = block } } // Initialize a statedb cache to ensure singleton account bloom filter generation statedb, err := state.New(self.currentBlock.Root(), self.chainDb) if err != nil { return err } self.stateCache = statedb // Issue a status log for the user headerTd := self.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64()) blockTd := self.GetTd(self.currentBlock.Hash(), self.currentBlock.NumberU64()) fastTd := self.GetTd(self.currentFastBlock.Hash(), self.currentFastBlock.NumberU64()) log.Info(fmt.Sprintf("Last header: #%d [%x…] TD=%v", currentHeader.Number, currentHeader.Hash().Bytes()[:4], headerTd)) log.Info(fmt.Sprintf("Last block: #%d [%x…] TD=%v", self.currentBlock.Number(), self.currentBlock.Hash().Bytes()[:4], blockTd)) log.Info(fmt.Sprintf("Fast block: #%d [%x…] TD=%v", self.currentFastBlock.Number(), self.currentFastBlock.Hash().Bytes()[:4], fastTd)) return nil } // SetHead rewinds the local chain to a new head. In the case of headers, everything // above the new head will be deleted and the new one set. In the case of blocks // though, the head may be further rewound if block bodies are missing (non-archive // nodes after a fast sync). func (bc *BlockChain) SetHead(head uint64) { bc.mu.Lock() defer bc.mu.Unlock() delFn := func(hash common.Hash, num uint64) { DeleteBody(bc.chainDb, hash, num) } bc.hc.SetHead(head, delFn) // Clear out any stale content from the caches bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.blockCache.Purge() bc.futureBlocks.Purge() // Update all computed fields to the new head currentHeader := bc.hc.CurrentHeader() if bc.currentBlock != nil && currentHeader.Number.Uint64() < bc.currentBlock.NumberU64() { bc.currentBlock = bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64()) } if bc.currentFastBlock != nil && currentHeader.Number.Uint64() < bc.currentFastBlock.NumberU64() { bc.currentFastBlock = bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64()) } if bc.currentBlock == nil { bc.currentBlock = bc.genesisBlock } if bc.currentFastBlock == nil { bc.currentFastBlock = bc.genesisBlock } if err := WriteHeadBlockHash(bc.chainDb, bc.currentBlock.Hash()); err != nil { log.Crit(fmt.Sprintf("failed to reset head block hash: %v", err)) } if err := WriteHeadFastBlockHash(bc.chainDb, bc.currentFastBlock.Hash()); err != nil { log.Crit(fmt.Sprintf("failed to reset head fast block hash: %v", err)) } bc.loadLastState() } // FastSyncCommitHead sets the current head block to the one defined by the hash // irrelevant what the chain contents were prior. func (self *BlockChain) FastSyncCommitHead(hash common.Hash) error { // Make sure that both the block as well at its state trie exists block := self.GetBlockByHash(hash) if block == nil { return fmt.Errorf("non existent block [%x…]", hash[:4]) } if _, err := trie.NewSecure(block.Root(), self.chainDb, 0); err != nil { return err } // If all checks out, manually set the head block self.mu.Lock() self.currentBlock = block self.mu.Unlock() log.Info(fmt.Sprintf("committed block #%d [%x…] as new head", block.Number(), hash[:4])) return nil } // GasLimit returns the gas limit of the current HEAD block. func (self *BlockChain) GasLimit() *big.Int { self.mu.RLock() defer self.mu.RUnlock() return self.currentBlock.GasLimit() } // LastBlockHash return the hash of the HEAD block. func (self *BlockChain) LastBlockHash() common.Hash { self.mu.RLock() defer self.mu.RUnlock() return self.currentBlock.Hash() } // CurrentBlock retrieves the current head block of the canonical chain. The // block is retrieved from the blockchain's internal cache. func (self *BlockChain) CurrentBlock() *types.Block { self.mu.RLock() defer self.mu.RUnlock() return self.currentBlock } // CurrentFastBlock retrieves the current fast-sync head block of the canonical // chain. The block is retrieved from the blockchain's internal cache. func (self *BlockChain) CurrentFastBlock() *types.Block { self.mu.RLock() defer self.mu.RUnlock() return self.currentFastBlock } // Status returns status information about the current chain such as the HEAD Td, // the HEAD hash and the hash of the genesis block. func (self *BlockChain) Status() (td *big.Int, currentBlock common.Hash, genesisBlock common.Hash) { self.mu.RLock() defer self.mu.RUnlock() return self.GetTd(self.currentBlock.Hash(), self.currentBlock.NumberU64()), self.currentBlock.Hash(), self.genesisBlock.Hash() } // SetProcessor sets the processor required for making state modifications. func (self *BlockChain) SetProcessor(processor Processor) { self.procmu.Lock() defer self.procmu.Unlock() self.processor = processor } // SetValidator sets the validator which is used to validate incoming blocks. func (self *BlockChain) SetValidator(validator Validator) { self.procmu.Lock() defer self.procmu.Unlock() self.validator = validator } // Validator returns the current validator. func (self *BlockChain) Validator() Validator { self.procmu.RLock() defer self.procmu.RUnlock() return self.validator } // Processor returns the current processor. func (self *BlockChain) Processor() Processor { self.procmu.RLock() defer self.procmu.RUnlock() return self.processor } // AuxValidator returns the auxiliary validator (Proof of work atm) func (self *BlockChain) AuxValidator() pow.PoW { return self.pow } // State returns a new mutable state based on the current HEAD block. func (self *BlockChain) State() (*state.StateDB, error) { return self.StateAt(self.CurrentBlock().Root()) } // StateAt returns a new mutable state based on a particular point in time. func (self *BlockChain) StateAt(root common.Hash) (*state.StateDB, error) { return self.stateCache.New(root) } // Reset purges the entire blockchain, restoring it to its genesis state. func (bc *BlockChain) Reset() { bc.ResetWithGenesisBlock(bc.genesisBlock) } // ResetWithGenesisBlock purges the entire blockchain, restoring it to the // specified genesis state. func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) { // Dump the entire block chain and purge the caches bc.SetHead(0) bc.mu.Lock() defer bc.mu.Unlock() // Prepare the genesis block and reinitialise the chain if err := bc.hc.WriteTd(genesis.Hash(), genesis.NumberU64(), genesis.Difficulty()); err != nil { log.Crit(fmt.Sprintf("failed to write genesis block TD: %v", err)) } if err := WriteBlock(bc.chainDb, genesis); err != nil { log.Crit(fmt.Sprintf("failed to write genesis block: %v", err)) } bc.genesisBlock = genesis bc.insert(bc.genesisBlock) bc.currentBlock = bc.genesisBlock bc.hc.SetGenesis(bc.genesisBlock.Header()) bc.hc.SetCurrentHeader(bc.genesisBlock.Header()) bc.currentFastBlock = bc.genesisBlock } // Export writes the active chain to the given writer. func (self *BlockChain) Export(w io.Writer) error { return self.ExportN(w, uint64(0), self.currentBlock.NumberU64()) } // ExportN writes a subset of the active chain to the given writer. func (self *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error { self.mu.RLock() defer self.mu.RUnlock() if first > last { return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last) } log.Info(fmt.Sprintf("exporting %d blocks...\n", last-first+1)) for nr := first; nr <= last; nr++ { block := self.GetBlockByNumber(nr) if block == nil { return fmt.Errorf("export failed on #%d: not found", nr) } if err := block.EncodeRLP(w); err != nil { return err } } return nil } // insert injects a new head block into the current block chain. This method // assumes that the block is indeed a true head. It will also reset the head // header and the head fast sync block to this very same block if they are older // or if they are on a different side chain. // // Note, this function assumes that the `mu` mutex is held! func (bc *BlockChain) insert(block *types.Block) { // If the block is on a side chain or an unknown one, force other heads onto it too updateHeads := GetCanonicalHash(bc.chainDb, block.NumberU64()) != block.Hash() // Add the block to the canonical chain number scheme and mark as the head if err := WriteCanonicalHash(bc.chainDb, block.Hash(), block.NumberU64()); err != nil { log.Crit(fmt.Sprintf("failed to insert block number: %v", err)) } if err := WriteHeadBlockHash(bc.chainDb, block.Hash()); err != nil { log.Crit(fmt.Sprintf("failed to insert head block hash: %v", err)) } bc.currentBlock = block // If the block is better than out head or is on a different chain, force update heads if updateHeads { bc.hc.SetCurrentHeader(block.Header()) if err := WriteHeadFastBlockHash(bc.chainDb, block.Hash()); err != nil { log.Crit(fmt.Sprintf("failed to insert head fast block hash: %v", err)) } bc.currentFastBlock = block } } // Accessors func (bc *BlockChain) Genesis() *types.Block { return bc.genesisBlock } // GetBody retrieves a block body (transactions and uncles) from the database by // hash, caching it if found. func (self *BlockChain) GetBody(hash common.Hash) *types.Body { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := self.bodyCache.Get(hash); ok { body := cached.(*types.Body) return body } body := GetBody(self.chainDb, hash, self.hc.GetBlockNumber(hash)) if body == nil { return nil } // Cache the found body for next time and return self.bodyCache.Add(hash, body) return body } // GetBodyRLP retrieves a block body in RLP encoding from the database by hash, // caching it if found. func (self *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := self.bodyRLPCache.Get(hash); ok { return cached.(rlp.RawValue) } body := GetBodyRLP(self.chainDb, hash, self.hc.GetBlockNumber(hash)) if len(body) == 0 { return nil } // Cache the found body for next time and return self.bodyRLPCache.Add(hash, body) return body } // HasBlock checks if a block is fully present in the database or not, caching // it if present. func (bc *BlockChain) HasBlock(hash common.Hash) bool { return bc.GetBlockByHash(hash) != nil } // HasBlockAndState checks if a block and associated state trie is fully present // in the database or not, caching it if present. func (bc *BlockChain) HasBlockAndState(hash common.Hash) bool { // Check first that the block itself is known block := bc.GetBlockByHash(hash) if block == nil { return false } // Ensure the associated state is also present _, err := state.New(block.Root(), bc.chainDb) return err == nil } // GetBlock retrieves a block from the database by hash and number, // caching it if found. func (self *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { // Short circuit if the block's already in the cache, retrieve otherwise if block, ok := self.blockCache.Get(hash); ok { return block.(*types.Block) } block := GetBlock(self.chainDb, hash, number) if block == nil { return nil } // Cache the found block for next time and return self.blockCache.Add(block.Hash(), block) return block } // GetBlockByHash retrieves a block from the database by hash, caching it if found. func (self *BlockChain) GetBlockByHash(hash common.Hash) *types.Block { return self.GetBlock(hash, self.hc.GetBlockNumber(hash)) } // GetBlockByNumber retrieves a block from the database by number, caching it // (associated with its hash) if found. func (self *BlockChain) GetBlockByNumber(number uint64) *types.Block { hash := GetCanonicalHash(self.chainDb, number) if hash == (common.Hash{}) { return nil } return self.GetBlock(hash, number) } // [deprecated by eth/62] // GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors. func (self *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) { number := self.hc.GetBlockNumber(hash) for i := 0; i < n; i++ { block := self.GetBlock(hash, number) if block == nil { break } blocks = append(blocks, block) hash = block.ParentHash() number-- } return } // GetUnclesInChain retrieves all the uncles from a given block backwards until // a specific distance is reached. func (self *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header { uncles := []*types.Header{} for i := 0; block != nil && i < length; i++ { uncles = append(uncles, block.Uncles()...) block = self.GetBlock(block.ParentHash(), block.NumberU64()-1) } return uncles } // Stop stops the blockchain service. If any imports are currently in progress // it will abort them using the procInterrupt. func (bc *BlockChain) Stop() { if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) { return } close(bc.quit) atomic.StoreInt32(&bc.procInterrupt, 1) bc.wg.Wait() log.Info(fmt.Sprint("Chain manager stopped")) } func (self *BlockChain) procFutureBlocks() { blocks := make([]*types.Block, 0, self.futureBlocks.Len()) for _, hash := range self.futureBlocks.Keys() { if block, exist := self.futureBlocks.Peek(hash); exist { blocks = append(blocks, block.(*types.Block)) } } if len(blocks) > 0 { types.BlockBy(types.Number).Sort(blocks) // Insert one by one as chain insertion needs contiguous ancestry between blocks for i := range blocks { self.InsertChain(blocks[i : i+1]) } } } type WriteStatus byte const ( NonStatTy WriteStatus = iota CanonStatTy SplitStatTy SideStatTy ) // Rollback is designed to remove a chain of links from the database that aren't // certain enough to be valid. func (self *BlockChain) Rollback(chain []common.Hash) { self.mu.Lock() defer self.mu.Unlock() for i := len(chain) - 1; i >= 0; i-- { hash := chain[i] currentHeader := self.hc.CurrentHeader() if currentHeader.Hash() == hash { self.hc.SetCurrentHeader(self.GetHeader(currentHeader.ParentHash, currentHeader.Number.Uint64()-1)) } if self.currentFastBlock.Hash() == hash { self.currentFastBlock = self.GetBlock(self.currentFastBlock.ParentHash(), self.currentFastBlock.NumberU64()-1) WriteHeadFastBlockHash(self.chainDb, self.currentFastBlock.Hash()) } if self.currentBlock.Hash() == hash { self.currentBlock = self.GetBlock(self.currentBlock.ParentHash(), self.currentBlock.NumberU64()-1) WriteHeadBlockHash(self.chainDb, self.currentBlock.Hash()) } } } // SetReceiptsData computes all the non-consensus fields of the receipts func SetReceiptsData(config *params.ChainConfig, block *types.Block, receipts types.Receipts) { signer := types.MakeSigner(config, block.Number()) transactions, logIndex := block.Transactions(), uint(0) for j := 0; j < len(receipts); j++ { // The transaction hash can be retrieved from the transaction itself receipts[j].TxHash = transactions[j].Hash() tx, _ := transactions[j].AsMessage(signer) // The contract address can be derived from the transaction itself if MessageCreatesContract(tx) { receipts[j].ContractAddress = crypto.CreateAddress(tx.From(), tx.Nonce()) } // The used gas can be calculated based on previous receipts if j == 0 { receipts[j].GasUsed = new(big.Int).Set(receipts[j].CumulativeGasUsed) } else { receipts[j].GasUsed = new(big.Int).Sub(receipts[j].CumulativeGasUsed, receipts[j-1].CumulativeGasUsed) } // The derived log fields can simply be set from the block and transaction for k := 0; k < len(receipts[j].Logs); k++ { receipts[j].Logs[k].BlockNumber = block.NumberU64() receipts[j].Logs[k].BlockHash = block.Hash() receipts[j].Logs[k].TxHash = receipts[j].TxHash receipts[j].Logs[k].TxIndex = uint(j) receipts[j].Logs[k].Index = logIndex logIndex++ } } } // InsertReceiptChain attempts to complete an already existing header chain with // transaction and receipt data. // XXX should this be moved to the test? func (self *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) { // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(blockChain); i++ { if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() { // Chain broke ancestry, log a messge (programming error) and skip insertion failure := fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(), blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4]) log.Error(fmt.Sprint(failure.Error())) return 0, failure } } // Pre-checks passed, start the block body and receipt imports self.wg.Add(1) defer self.wg.Done() // Collect some import statistics to report on stats := struct{ processed, ignored int32 }{} start := time.Now() // Create the block importing task queue and worker functions tasks := make(chan int, len(blockChain)) for i := 0; i < len(blockChain) && i < len(receiptChain); i++ { tasks <- i } close(tasks) errs, failed := make([]error, len(tasks)), int32(0) process := func(worker int) { for index := range tasks { block, receipts := blockChain[index], receiptChain[index] // Short circuit insertion if shutting down or processing failed if atomic.LoadInt32(&self.procInterrupt) == 1 { return } if atomic.LoadInt32(&failed) > 0 { return } // Short circuit if the owner header is unknown if !self.HasHeader(block.Hash()) { errs[index] = fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4]) atomic.AddInt32(&failed, 1) return } // Skip if the entire data is already known if self.HasBlock(block.Hash()) { atomic.AddInt32(&stats.ignored, 1) continue } // Compute all the non-consensus fields of the receipts SetReceiptsData(self.config, block, receipts) // Write all the data out into the database if err := WriteBody(self.chainDb, block.Hash(), block.NumberU64(), block.Body()); err != nil { errs[index] = fmt.Errorf("failed to write block body: %v", err) atomic.AddInt32(&failed, 1) log.Crit(fmt.Sprint(errs[index])) return } if err := WriteBlockReceipts(self.chainDb, block.Hash(), block.NumberU64(), receipts); err != nil { errs[index] = fmt.Errorf("failed to write block receipts: %v", err) atomic.AddInt32(&failed, 1) log.Crit(fmt.Sprint(errs[index])) return } if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil { errs[index] = fmt.Errorf("failed to write log blooms: %v", err) atomic.AddInt32(&failed, 1) log.Crit(fmt.Sprint(errs[index])) return } if err := WriteTransactions(self.chainDb, block); err != nil { errs[index] = fmt.Errorf("failed to write individual transactions: %v", err) atomic.AddInt32(&failed, 1) log.Crit(fmt.Sprint(errs[index])) return } if err := WriteReceipts(self.chainDb, receipts); err != nil { errs[index] = fmt.Errorf("failed to write individual receipts: %v", err) atomic.AddInt32(&failed, 1) log.Crit(fmt.Sprint(errs[index])) return } atomic.AddInt32(&stats.processed, 1) } } // Start as many worker threads as goroutines allowed pending := new(sync.WaitGroup) for i := 0; i < runtime.GOMAXPROCS(0); i++ { pending.Add(1) go func(id int) { defer pending.Done() process(id) }(i) } pending.Wait() // If anything failed, report if failed > 0 { for i, err := range errs { if err != nil { return i, err } } } if atomic.LoadInt32(&self.procInterrupt) == 1 { log.Debug(fmt.Sprint("premature abort during receipt chain processing")) return 0, nil } // Update the head fast sync block if better self.mu.Lock() head := blockChain[len(errs)-1] if self.GetTd(self.currentFastBlock.Hash(), self.currentFastBlock.NumberU64()).Cmp(self.GetTd(head.Hash(), head.NumberU64())) < 0 { if err := WriteHeadFastBlockHash(self.chainDb, head.Hash()); err != nil { log.Crit(fmt.Sprintf("failed to update head fast block hash: %v", err)) } self.currentFastBlock = head } self.mu.Unlock() // Report some public statistics so the user has a clue what's going on first, last := blockChain[0], blockChain[len(blockChain)-1] ignored := "" if stats.ignored > 0 { ignored = fmt.Sprintf(" (%d ignored)", stats.ignored) } log.Info(fmt.Sprintf("imported %4d receipts in %9v. #%d [%x… / %x…]%s", stats.processed, common.PrettyDuration(time.Since(start)), last.Number(), first.Hash().Bytes()[:4], last.Hash().Bytes()[:4], ignored)) return 0, nil } // WriteBlock writes the block to the chain. func (self *BlockChain) WriteBlock(block *types.Block) (status WriteStatus, err error) { self.wg.Add(1) defer self.wg.Done() // Calculate the total difficulty of the block ptd := self.GetTd(block.ParentHash(), block.NumberU64()-1) if ptd == nil { return NonStatTy, ParentError(block.ParentHash()) } // Make sure no inconsistent state is leaked during insertion self.mu.Lock() defer self.mu.Unlock() localTd := self.GetTd(self.currentBlock.Hash(), self.currentBlock.NumberU64()) externTd := new(big.Int).Add(block.Difficulty(), ptd) // Irrelevant of the canonical status, write the block itself to the database if err := self.hc.WriteTd(block.Hash(), block.NumberU64(), externTd); err != nil { log.Crit(fmt.Sprintf("failed to write block total difficulty: %v", err)) } if err := WriteBlock(self.chainDb, block); err != nil { log.Crit(fmt.Sprintf("failed to write block contents: %v", err)) } // If the total difficulty is higher than our known, add it to the canonical chain // Second clause in the if statement reduces the vulnerability to selfish mining. // Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf if externTd.Cmp(localTd) > 0 || (externTd.Cmp(localTd) == 0 && mrand.Float64() < 0.5) { // Reorganise the chain if the parent is not the head block if block.ParentHash() != self.currentBlock.Hash() { if err := self.reorg(self.currentBlock, block); err != nil { return NonStatTy, err } } self.insert(block) // Insert the block as the new head of the chain status = CanonStatTy } else { status = SideStatTy } self.futureBlocks.Remove(block.Hash()) return } // InsertChain will attempt to insert the given chain in to the canonical chain or, otherwise, create a fork. If an error is returned // it will return the index number of the failing block as well an error describing what went wrong (for possible errors see core/errors.go). func (self *BlockChain) InsertChain(chain types.Blocks) (int, error) { // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(chain); i++ { if chain[i].NumberU64() != chain[i-1].NumberU64()+1 || chain[i].ParentHash() != chain[i-1].Hash() { // Chain broke ancestry, log a messge (programming error) and skip insertion failure := fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, chain[i-1].NumberU64(), chain[i-1].Hash().Bytes()[:4], i, chain[i].NumberU64(), chain[i].Hash().Bytes()[:4], chain[i].ParentHash().Bytes()[:4]) log.Error(fmt.Sprint(failure.Error())) return 0, failure } } // Pre-checks passed, start the full block imports self.wg.Add(1) defer self.wg.Done() self.chainmu.Lock() defer self.chainmu.Unlock() // A queued approach to delivering events. This is generally // faster than direct delivery and requires much less mutex // acquiring. var ( stats = insertStats{startTime: mclock.Now()} events = make([]interface{}, 0, len(chain)) coalescedLogs []*types.Log nonceChecked = make([]bool, len(chain)) ) // Start the parallel nonce verifier. nonceAbort, nonceResults := verifyNoncesFromBlocks(self.pow, chain) defer close(nonceAbort) for i, block := range chain { if atomic.LoadInt32(&self.procInterrupt) == 1 { log.Debug(fmt.Sprint("Premature abort during block chain processing")) break } bstart := time.Now() // Wait for block i's nonce to be verified before processing // its state transition. for !nonceChecked[i] { r := <-nonceResults nonceChecked[r.index] = true if !r.valid { block := chain[r.index] return r.index, &BlockNonceErr{Hash: block.Hash(), Number: block.Number(), Nonce: block.Nonce()} } } if BadHashes[block.Hash()] { err := BadHashError(block.Hash()) self.reportBlock(block, nil, err) return i, err } // Stage 1 validation of the block using the chain's validator // interface. err := self.Validator().ValidateBlock(block) if err != nil { if IsKnownBlockErr(err) { stats.ignored++ continue } if err == BlockFutureErr { // Allow up to MaxFuture second in the future blocks. If this limit // is exceeded the chain is discarded and processed at a later time // if given. max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks) if block.Time().Cmp(max) == 1 { return i, fmt.Errorf("%v: BlockFutureErr, %v > %v", BlockFutureErr, block.Time(), max) } self.futureBlocks.Add(block.Hash(), block) stats.queued++ continue } if IsParentErr(err) && self.futureBlocks.Contains(block.ParentHash()) { self.futureBlocks.Add(block.Hash(), block) stats.queued++ continue } self.reportBlock(block, nil, err) return i, err } // Create a new statedb using the parent block and report an // error if it fails. switch { case i == 0: err = self.stateCache.Reset(self.GetBlock(block.ParentHash(), block.NumberU64()-1).Root()) default: err = self.stateCache.Reset(chain[i-1].Root()) } if err != nil { self.reportBlock(block, nil, err) return i, err } // Process block using the parent state as reference point. receipts, logs, usedGas, err := self.processor.Process(block, self.stateCache, self.vmConfig) if err != nil { self.reportBlock(block, receipts, err) return i, err } // Validate the state using the default validator err = self.Validator().ValidateState(block, self.GetBlock(block.ParentHash(), block.NumberU64()-1), self.stateCache, receipts, usedGas) if err != nil { self.reportBlock(block, receipts, err) return i, err } // Write state changes to database _, err = self.stateCache.Commit(self.config.IsEIP158(block.Number())) if err != nil { return i, err } // coalesce logs for later processing coalescedLogs = append(coalescedLogs, logs...) if err := WriteBlockReceipts(self.chainDb, block.Hash(), block.NumberU64(), receipts); err != nil { return i, err } // write the block to the chain and get the status status, err := self.WriteBlock(block) if err != nil { return i, err } switch status { case CanonStatTy: log.Debug("", "msg", log.Lazy{Fn: func() string { return fmt.Sprintf("inserted block #%d [%x…] in %9v: %3d txs %7v gas %d uncles.", block.Number(), block.Hash().Bytes()[0:4], common.PrettyDuration(time.Since(bstart)), len(block.Transactions()), block.GasUsed(), len(block.Uncles())) }}) blockInsertTimer.UpdateSince(bstart) events = append(events, ChainEvent{block, block.Hash(), logs}) // This puts transactions in a extra db for rpc if err := WriteTransactions(self.chainDb, block); err != nil { return i, err } // store the receipts if err := WriteReceipts(self.chainDb, receipts); err != nil { return i, err } // Write map map bloom filters if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil { return i, err } // Write hash preimages if err := WritePreimages(self.chainDb, block.NumberU64(), self.stateCache.Preimages()); err != nil { return i, err } case SideStatTy: log.Trace("", "msg", log.Lazy{Fn: func() string { return fmt.Sprintf("inserted forked block #%d [%x…] (TD=%v) in %9v: %3d txs %d uncles.", block.Number(), block.Hash().Bytes()[0:4], block.Difficulty(), common.PrettyDuration(time.Since(bstart)), len(block.Transactions()), len(block.Uncles())) }}) blockInsertTimer.UpdateSince(bstart) events = append(events, ChainSideEvent{block}) case SplitStatTy: events = append(events, ChainSplitEvent{block, logs}) } stats.processed++ stats.usedGas += usedGas.Uint64() stats.report(chain, i) } go self.postChainEvents(events, coalescedLogs) return 0, nil } // insertStats tracks and reports on block insertion. type insertStats struct { queued, processed, ignored int usedGas uint64 lastIndex int startTime mclock.AbsTime } // statsReportLimit is the time limit during import after which we always print // out progress. This avoids the user wondering what's going on. const statsReportLimit = 8 * time.Second // report prints statistics if some number of blocks have been processed // or more than a few seconds have passed since the last message. func (st *insertStats) report(chain []*types.Block, index int) { // Fetch the timings for the batch var ( now = mclock.Now() elapsed = time.Duration(now) - time.Duration(st.startTime) ) // If we're at the last block of the batch or report period reached, log if index == len(chain)-1 || elapsed >= statsReportLimit { start, end := chain[st.lastIndex], chain[index] txcount := countTransactions(chain[st.lastIndex : index+1]) var hashes, extra string if st.queued > 0 || st.ignored > 0 { extra = fmt.Sprintf(" (%d queued %d ignored)", st.queued, st.ignored) } if st.processed > 1 { hashes = fmt.Sprintf("%x… / %x…", start.Hash().Bytes()[:4], end.Hash().Bytes()[:4]) } else { hashes = fmt.Sprintf("%x…", end.Hash().Bytes()[:4]) } log.Info(fmt.Sprintf("imported %4d blocks, %5d txs (%7.3f Mg) in %9v (%6.3f Mg/s). #%v [%s]%s", st.processed, txcount, float64(st.usedGas)/1000000, common.PrettyDuration(elapsed), float64(st.usedGas)*1000/float64(elapsed), end.Number(), hashes, extra)) *st = insertStats{startTime: now, lastIndex: index} } } func countTransactions(chain []*types.Block) (c int) { for _, b := range chain { c += len(b.Transactions()) } return c } // reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them // to be part of the new canonical chain and accumulates potential missing transactions and post an // event about them func (self *BlockChain) reorg(oldBlock, newBlock *types.Block) error { var ( newChain types.Blocks oldChain types.Blocks commonBlock *types.Block deletedTxs types.Transactions deletedLogs []*types.Log // collectLogs collects the logs that were generated during the // processing of the block that corresponds with the given hash. // These logs are later announced as deleted. collectLogs = func(h common.Hash) { // Coalesce logs and set 'Removed'. receipts := GetBlockReceipts(self.chainDb, h, self.hc.GetBlockNumber(h)) for _, receipt := range receipts { for _, log := range receipt.Logs { del := *log del.Removed = true deletedLogs = append(deletedLogs, &del) } } } ) // first reduce whoever is higher bound if oldBlock.NumberU64() > newBlock.NumberU64() { // reduce old chain for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = self.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) { oldChain = append(oldChain, oldBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash()) } } else { // reduce new chain and append new chain blocks for inserting later on for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = self.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } for { if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } oldChain = append(oldChain, oldBlock) newChain = append(newChain, newBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash()) oldBlock, newBlock = self.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1), self.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) if oldBlock == nil { return fmt.Errorf("Invalid old chain") } if newBlock == nil { return fmt.Errorf("Invalid new chain") } } // Ensure the user sees large reorgs logFn := log.Debug if len(oldChain) > 63 { logFn = log.Warn } logFn("", "msg", log.Lazy{Fn: func() string { oldLen, newLen := len(oldChain), len(newChain) newLast, newFirst := newChain[0], newChain[newLen-1] oldLast, oldFirst := oldChain[0], oldChain[oldLen-1] return fmt.Sprintf("Chain split detected after #%v [%x…]. Reorganising chain (-%v +%v blocks), rejecting #%v-#%v [%x…/%x…] in favour of #%v-#%v [%x…/%x…]", commonBlock.Number(), commonBlock.Hash().Bytes()[:4], oldLen, newLen, oldFirst.Number(), oldLast.Number(), oldFirst.Hash().Bytes()[:4], oldLast.Hash().Bytes()[:4], newFirst.Number(), newLast.Number(), newFirst.Hash().Bytes()[:4], newLast.Hash().Bytes()[:4]) }}) var addedTxs types.Transactions // insert blocks. Order does not matter. Last block will be written in ImportChain itself which creates the new head properly for _, block := range newChain { // insert the block in the canonical way, re-writing history self.insert(block) // write canonical receipts and transactions if err := WriteTransactions(self.chainDb, block); err != nil { return err } receipts := GetBlockReceipts(self.chainDb, block.Hash(), block.NumberU64()) // write receipts if err := WriteReceipts(self.chainDb, receipts); err != nil { return err } // Write map map bloom filters if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil { return err } addedTxs = append(addedTxs, block.Transactions()...) } // calculate the difference between deleted and added transactions diff := types.TxDifference(deletedTxs, addedTxs) // When transactions get deleted from the database that means the // receipts that were created in the fork must also be deleted for _, tx := range diff { DeleteReceipt(self.chainDb, tx.Hash()) DeleteTransaction(self.chainDb, tx.Hash()) } // Must be posted in a goroutine because of the transaction pool trying // to acquire the chain manager lock if len(diff) > 0 { go self.eventMux.Post(RemovedTransactionEvent{diff}) } if len(deletedLogs) > 0 { go self.eventMux.Post(RemovedLogsEvent{deletedLogs}) } if len(oldChain) > 0 { go func() { for _, block := range oldChain { self.eventMux.Post(ChainSideEvent{Block: block}) } }() } return nil } // postChainEvents iterates over the events generated by a chain insertion and // posts them into the event mux. func (self *BlockChain) postChainEvents(events []interface{}, logs []*types.Log) { // post event logs for further processing self.eventMux.Post(logs) for _, event := range events { if event, ok := event.(ChainEvent); ok { // We need some control over the mining operation. Acquiring locks and waiting for the miner to create new block takes too long // and in most cases isn't even necessary. if self.LastBlockHash() == event.Hash { self.eventMux.Post(ChainHeadEvent{event.Block}) } } // Fire the insertion events individually too self.eventMux.Post(event) } } func (self *BlockChain) update() { futureTimer := time.Tick(5 * time.Second) for { select { case <-futureTimer: self.procFutureBlocks() case <-self.quit: return } } } // BadBlockArgs represents the entries in the list returned when bad blocks are queried. type BadBlockArgs struct { Hash common.Hash `json:"hash"` Header *types.Header `json:"header"` } // BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network func (bc *BlockChain) BadBlocks() ([]BadBlockArgs, error) { headers := make([]BadBlockArgs, 0, bc.badBlocks.Len()) for _, hash := range bc.badBlocks.Keys() { if hdr, exist := bc.badBlocks.Peek(hash); exist { header := hdr.(*types.Header) headers = append(headers, BadBlockArgs{header.Hash(), header}) } } return headers, nil } // addBadBlock adds a bad block to the bad-block LRU cache func (bc *BlockChain) addBadBlock(block *types.Block) { bc.badBlocks.Add(block.Header().Hash(), block.Header()) } // reportBlock logs a bad block error. func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) { bc.addBadBlock(block) log.Error("", "msg", log.Lazy{Fn: func() string { var receiptString string for _, receipt := range receipts { receiptString += fmt.Sprintf("\t%v\n", receipt) } return fmt.Sprintf(` ########## BAD BLOCK ######### Chain config: %v Number: %v Hash: 0x%x %v Error: %v ############################## `, bc.config, block.Number(), block.Hash(), receiptString, err) }}) } // InsertHeaderChain attempts to insert the given header chain in to the local // chain, possibly creating a reorg. If an error is returned, it will return the // index number of the failing header as well an error describing what went wrong. // // The verify parameter can be used to fine tune whether nonce verification // should be done or not. The reason behind the optional check is because some // of the header retrieval mechanisms already need to verify nonces, as well as // because nonces can be verified sparsely, not needing to check each. func (self *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) { // Make sure only one thread manipulates the chain at once self.chainmu.Lock() defer self.chainmu.Unlock() self.wg.Add(1) defer self.wg.Done() whFunc := func(header *types.Header) error { self.mu.Lock() defer self.mu.Unlock() _, err := self.hc.WriteHeader(header) return err } return self.hc.InsertHeaderChain(chain, checkFreq, whFunc) } // writeHeader writes a header into the local chain, given that its parent is // already known. If the total difficulty of the newly inserted header becomes // greater than the current known TD, the canonical chain is re-routed. // // Note: This method is not concurrent-safe with inserting blocks simultaneously // into the chain, as side effects caused by reorganisations cannot be emulated // without the real blocks. Hence, writing headers directly should only be done // in two scenarios: pure-header mode of operation (light clients), or properly // separated header/block phases (non-archive clients). func (self *BlockChain) writeHeader(header *types.Header) error { self.wg.Add(1) defer self.wg.Done() self.mu.Lock() defer self.mu.Unlock() _, err := self.hc.WriteHeader(header) return err } // CurrentHeader retrieves the current head header of the canonical chain. The // header is retrieved from the HeaderChain's internal cache. func (self *BlockChain) CurrentHeader() *types.Header { self.mu.RLock() defer self.mu.RUnlock() return self.hc.CurrentHeader() } // GetTd retrieves a block's total difficulty in the canonical chain from the // database by hash and number, caching it if found. func (self *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int { return self.hc.GetTd(hash, number) } // GetTdByHash retrieves a block's total difficulty in the canonical chain from the // database by hash, caching it if found. func (self *BlockChain) GetTdByHash(hash common.Hash) *big.Int { return self.hc.GetTdByHash(hash) } // GetHeader retrieves a block header from the database by hash and number, // caching it if found. func (self *BlockChain) GetHeader(hash common.Hash, number uint64) *types.Header { return self.hc.GetHeader(hash, number) } // GetHeaderByHash retrieves a block header from the database by hash, caching it if // found. func (self *BlockChain) GetHeaderByHash(hash common.Hash) *types.Header { return self.hc.GetHeaderByHash(hash) } // HasHeader checks if a block header is present in the database or not, caching // it if present. func (bc *BlockChain) HasHeader(hash common.Hash) bool { return bc.hc.HasHeader(hash) } // GetBlockHashesFromHash retrieves a number of block hashes starting at a given // hash, fetching towards the genesis block. func (self *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash { return self.hc.GetBlockHashesFromHash(hash, max) } // GetHeaderByNumber retrieves a block header from the database by number, // caching it (associated with its hash) if found. func (self *BlockChain) GetHeaderByNumber(number uint64) *types.Header { return self.hc.GetHeaderByNumber(number) } // Config retrieves the blockchain's chain configuration. func (self *BlockChain) Config() *params.ChainConfig { return self.config }