/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_CORE_KERNELS_AGGREGATE_OPS_H_ #define TENSORFLOW_CORE_KERNELS_AGGREGATE_OPS_H_ #include #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" namespace tensorflow { namespace functor { // Functor definitions for Aggregate ops, must be compilable by nvcc. template struct Add2Functor { void operator()(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2); }; template struct Add2EigenImpl { static void Compute(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2) { out.device(d) = in1 + in2; } }; template struct Add3Functor { void operator()(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3); }; template struct Add3EigenImpl { static void Compute(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3) { out.device(d) = in1 + in2 + in3; } }; template struct Add4Functor { void operator()(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4); }; template struct Add4EigenImpl { static void Compute(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4) { out.device(d) = in1 + in2 + in3 + in4; } }; template struct Add5Functor { void operator()(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5); }; template struct Add5EigenImpl { static void Compute(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5) { out.device(d) = in1 + in2 + in3 + in4 + in5; } }; template struct Add6Functor { void operator()(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6); }; template struct Add6EigenImpl { static void Compute(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6) { out.device(d) = in1 + in2 + in3 + in4 + in5 + in6; } }; template struct Add7Functor { void operator()(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6, typename TTypes::ConstFlat in7); }; template struct Add7EigenImpl { static void Compute(const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6, typename TTypes::ConstFlat in7) { out.device(d) = in1 + in2 + in3 + in4 + in5 + in6 + in7; } }; template struct Add8Functor { void operator()( const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6, typename TTypes::ConstFlat in7, typename TTypes::ConstFlat in8); }; template struct Add8EigenImpl { static void Compute( const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6, typename TTypes::ConstFlat in7, typename TTypes::ConstFlat in8) { out.device(d) = in1 + in2 + in3 + in4 + in5 + in6 + in7 + in8; } }; // Add8p is like Add8 except the underlying implementation should += // rather than assign to the output. template struct Add8pFunctor { void operator()( const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6, typename TTypes::ConstFlat in7, typename TTypes::ConstFlat in8); }; template struct Add8pEigenImpl { static void Compute( const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6, typename TTypes::ConstFlat in7, typename TTypes::ConstFlat in8) { out.device(d) += in1 + in2 + in3 + in4 + in5 + in6 + in7 + in8; } }; template struct Add9Functor { void operator()( const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6, typename TTypes::ConstFlat in7, typename TTypes::ConstFlat in8, typename TTypes::ConstFlat in9); }; template struct Add9EigenImpl { static void Compute( const Device& d, typename TTypes::Flat out, typename TTypes::ConstFlat in1, typename TTypes::ConstFlat in2, typename TTypes::ConstFlat in3, typename TTypes::ConstFlat in4, typename TTypes::ConstFlat in5, typename TTypes::ConstFlat in6, typename TTypes::ConstFlat in7, typename TTypes::ConstFlat in8, typename TTypes::ConstFlat in9) { out.device(d) = in1 + in2 + in3 + in4 + in5 + in6 + in7 + in8 + in9; } }; } // namespace functor template class AddNOp : public OpKernelT { public: explicit AddNOp(OpKernelConstructionT* context) : OpKernelT(context) {} void Compute(OpKernelContextT* ctx) override { if (!ctx->ValidateInputsAreSameShape(this)) return; const Tensor& input0 = ctx->input(0); const int num = ctx->num_inputs(); if (num == 1) { ctx->set_output(0, input0); return; } // Try to forward and accumulate the result in one of the input buffers. int reused_input = -1; gtl::InlinedVector input_indices(num); std::iota(input_indices.begin(), input_indices.end(), 0); Tensor* output = nullptr; for (int input_idx = 0; input_idx < num; ++input_idx) { if (ctx->forward_input_to_output_with_shape(input_idx, 0, input0.shape(), &output)) { reused_input = input_idx; break; } } if (reused_input == -1) { OP_REQUIRES_OK(ctx, ctx->allocate_output(0, input0.shape(), &output)); } else if (reused_input > 0) { // Move the forwarded buffer to the front so we don't double count // anything if there are more than 8 inputs. input_indices[0] = reused_input; input_indices[reused_input] = 0; } auto To = output->flat(); #define I(IDX) ctx->input(input_indices[IDX]).template flat() #if defined(__ANDROID_TYPES_SLIM__) // On Android by default,we only support additions of two arguments, so we // can reduce the number of template instantiations. OP_REQUIRES(ctx, num == 2, errors::InvalidArgument("Only additions of two arguments " "supported. Num inputs: ", num)); functor::Add2Functor functor2; functor2(ctx->template eigen_device(), To, I(0), I(1)); #else static const int kWidth = 8; int r = num % kWidth; switch (r) { case 2: { functor::Add2Functor functor2; functor2(ctx->template eigen_device(), To, I(0), I(1)); break; } case 3: { functor::Add3Functor functor3; functor3(ctx->template eigen_device(), To, I(0), I(1), I(2)); break; } case 4: { functor::Add4Functor functor4; functor4(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3)); break; } case 5: { functor::Add5Functor functor5; functor5(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4)); break; } case 6: { functor::Add6Functor functor6; functor6(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4), I(5)); break; } case 7: { functor::Add7Functor functor7; functor7(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4), I(5), I(6)); break; } case 0: { functor::Add8Functor functor8; functor8(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4), I(5), I(6), I(7)); r = 8; break; } case 1: { functor::Add9Functor functor9; functor9(ctx->template eigen_device(), To, I(0), I(1), I(2), I(3), I(4), I(5), I(6), I(7), I(8)); r = 9; break; } } for (; r < num; r += kWidth) { functor::Add8pFunctor functor8p; functor8p(ctx->template eigen_device(), To, I(r), I(r + 1), I(r + 2), I(r + 3), I(r + 4), I(r + 5), I(r + 6), I(r + 7)); } #endif // defined(__ANDROID_TYPES_SLIM__) #undef I } }; template class AddNOp : public OpKernelT { public: explicit AddNOp(OpKernelConstructionT* context) : OpKernelT(context) {} void Compute(OpKernelContextT* ctx) override { if (!ctx->ValidateInputsAreSameShape(this)) return; const Tensor& input0 = ctx->input(0); const int num = ctx->num_inputs(); if (num == 1) { ctx->set_output(0, input0); return; } for (int i = 0; i < num; ++i) { // Step 1: ensure unary variants. OP_REQUIRES( ctx, ctx->input(i).dims() == 0, errors::InvalidArgument( "AddN of non-scalar Tensor with dtype=DT_VARIANT is not " "supported; inputs[", i, " has shape: ", ctx->input(i).shape().DebugString(), ".")); } // Step 2: Sum input variants in a tree-like structure using // BinaryOpVariants(ADD_VARIANT_BINARY_OP, ...) // For the output create a default-constructed variant object. // // Pairwise summation provides better numerical precision by // reducing round-off error: // // https://en.wikipedia.org/wiki/Pairwise_summation // // These two vectors are used to store and mark intermediate sums. gtl::InlinedVector temp_filled(num, false); gtl::InlinedVector temp(num); // Tree-based summation. int skip = 1; int n = num; while (skip < n) { int i = skip; while (i < n) { // TODO(ebrevdo, rmlarsen): Parallelize the pairwise summations in the // inner loop if the variants are "large". // x[i - skip] += x[i] OP_REQUIRES_OK(ctx, AddVariantTo(ctx, i - skip, i, &temp, &temp_filled)); // We won't use this index again, recover its memory. temp[i].clear(); i += 2 * skip; } if (i == n) { // x[0] += x[i - skip] OP_REQUIRES_OK(ctx, AddVariantTo(ctx, 0, i - skip, &temp, &temp_filled)); // We won't use this index again, recover its memory. temp[i - skip].clear(); n -= skip; } skip *= 2; } Tensor out(cpu_allocator(), DT_VARIANT, TensorShape({})); out.scalar()() = std::move(temp[0]); ctx->set_output(0, out); } private: // AddVariantTo efficiently performs: // temp[lhs_ix] <- array(lhs_ix) + array(rhs_ix) // where array(ix) := (temp_filled[ix] // ? temp[ix] // : ctx->input(ix).scalar()()) // This reduces (possibly expensive) copying of Variants from // the inputs into temp at the lowest levels of the summation tree. static inline Status AddVariantTo(OpKernelContextT* ctx, const int lhs_ix, const int rhs_ix, gtl::InlinedVector* temp, gtl::InlinedVector* temp_filled) { Variant tmp; if (temp_filled->at(lhs_ix)) tmp = std::move(temp->at(lhs_ix)); const Variant& a = temp_filled->at(lhs_ix) ? tmp : ctx->input(lhs_ix).template scalar()(); const Variant& b = temp_filled->at(rhs_ix) ? temp->at(rhs_ix) : ctx->input(rhs_ix).template scalar()(); Variant* c = &temp->at(lhs_ix); TF_RETURN_IF_ERROR( BinaryOpVariants(ctx, ADD_VARIANT_BINARY_OP, a, b, c)); temp_filled->at(lhs_ix) = true; return Status::OK(); } }; } // namespace tensorflow #endif // TENSORFLOW_CORE_KERNELS_AGGREGATE_OPS_H_