/* Copyright 2017 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package sqlparser import ( "bytes" "encoding/hex" "encoding/json" "errors" "fmt" "io" "strings" "sync" "vitess.io/vitess/go/sqltypes" "vitess.io/vitess/go/vt/log" "vitess.io/vitess/go/vt/vterrors" querypb "vitess.io/vitess/go/vt/proto/query" vtrpcpb "vitess.io/vitess/go/vt/proto/vtrpc" ) // parserPool is a pool for parser objects. var parserPool = sync.Pool{} // zeroParser is a zero-initialized parser to help reinitialize the parser for pooling. var zeroParser = *(yyNewParser().(*yyParserImpl)) // yyParsePooled is a wrapper around yyParse that pools the parser objects. There isn't a // particularly good reason to use yyParse directly, since it immediately discards its parser. What // would be ideal down the line is to actually pool the stacks themselves rather than the parser // objects, as per https://github.com/cznic/goyacc/blob/master/main.go. However, absent an upstream // change to goyacc, this is the next best option. // // N.B: Parser pooling means that you CANNOT take references directly to parse stack variables (e.g. // $$ = &$4) in sql.y rules. You must instead add an intermediate reference like so: // showCollationFilterOpt := $4 // $$ = &Show{Type: string($2), ShowCollationFilterOpt: &showCollationFilterOpt} func yyParsePooled(yylex yyLexer) int { // Being very particular about using the base type and not an interface type b/c we depend on // the implementation to know how to reinitialize the parser. var parser *yyParserImpl i := parserPool.Get() if i != nil { parser = i.(*yyParserImpl) } else { parser = yyNewParser().(*yyParserImpl) } defer func() { *parser = zeroParser parserPool.Put(parser) }() return parser.Parse(yylex) } // Instructions for creating new types: If a type // needs to satisfy an interface, declare that function // along with that interface. This will help users // identify the list of types to which they can assert // those interfaces. // If the member of a type has a string with a predefined // list of values, declare those values as const following // the type. // For interfaces that define dummy functions to consolidate // a set of types, define the function as iTypeName. // This will help avoid name collisions. // Parse parses the SQL in full and returns a Statement, which // is the AST representation of the query. If a DDL statement // is partially parsed but still contains a syntax error, the // error is ignored and the DDL is returned anyway. func Parse(sql string) (Statement, error) { tokenizer := NewStringTokenizer(sql) if yyParsePooled(tokenizer) != 0 { if tokenizer.partialDDL != nil { if typ, val := tokenizer.Scan(); typ != 0 { return nil, fmt.Errorf("extra characters encountered after end of DDL: '%s'", string(val)) } log.Warningf("ignoring error parsing DDL '%s': %v", sql, tokenizer.LastError) tokenizer.ParseTree = tokenizer.partialDDL return tokenizer.ParseTree, nil } return nil, vterrors.New(vtrpcpb.Code_INVALID_ARGUMENT, tokenizer.LastError.Error()) } if tokenizer.ParseTree == nil { return nil, ErrEmpty } return tokenizer.ParseTree, nil } // ParseStrictDDL is the same as Parse except it errors on // partially parsed DDL statements. func ParseStrictDDL(sql string) (Statement, error) { tokenizer := NewStringTokenizer(sql) if yyParsePooled(tokenizer) != 0 { return nil, tokenizer.LastError } if tokenizer.ParseTree == nil { return nil, ErrEmpty } return tokenizer.ParseTree, nil } // ParseTokenizer is a raw interface to parse from the given tokenizer. // This does not used pooled parsers, and should not be used in general. func ParseTokenizer(tokenizer *Tokenizer) int { return yyParse(tokenizer) } // ParseNext parses a single SQL statement from the tokenizer // returning a Statement which is the AST representation of the query. // The tokenizer will always read up to the end of the statement, allowing for // the next call to ParseNext to parse any subsequent SQL statements. When // there are no more statements to parse, a error of io.EOF is returned. func ParseNext(tokenizer *Tokenizer) (Statement, error) { return parseNext(tokenizer, false) } // ParseNextStrictDDL is the same as ParseNext except it errors on // partially parsed DDL statements. func ParseNextStrictDDL(tokenizer *Tokenizer) (Statement, error) { return parseNext(tokenizer, true) } func parseNext(tokenizer *Tokenizer, strict bool) (Statement, error) { if tokenizer.lastChar == ';' { tokenizer.next() tokenizer.skipBlank() } if tokenizer.lastChar == eofChar { return nil, io.EOF } tokenizer.reset() tokenizer.multi = true if yyParsePooled(tokenizer) != 0 { if tokenizer.partialDDL != nil && !strict { tokenizer.ParseTree = tokenizer.partialDDL return tokenizer.ParseTree, nil } return nil, tokenizer.LastError } if tokenizer.ParseTree == nil { return ParseNext(tokenizer) } return tokenizer.ParseTree, nil } // ErrEmpty is a sentinel error returned when parsing empty statements. var ErrEmpty = errors.New("empty statement") // SplitStatement returns the first sql statement up to either a ; or EOF // and the remainder from the given buffer func SplitStatement(blob string) (string, string, error) { tokenizer := NewStringTokenizer(blob) tkn := 0 for { tkn, _ = tokenizer.Scan() if tkn == 0 || tkn == ';' || tkn == eofChar { break } } if tokenizer.LastError != nil { return "", "", tokenizer.LastError } if tkn == ';' { return blob[:tokenizer.Position-2], blob[tokenizer.Position-1:], nil } return blob, "", nil } // SplitStatementToPieces split raw sql statement that may have multi sql pieces to sql pieces // returns the sql pieces blob contains; or error if sql cannot be parsed func SplitStatementToPieces(blob string) (pieces []string, err error) { pieces = make([]string, 0, 16) tokenizer := NewStringTokenizer(blob) tkn := 0 var stmt string stmtBegin := 0 for { tkn, _ = tokenizer.Scan() if tkn == ';' { stmt = blob[stmtBegin : tokenizer.Position-2] pieces = append(pieces, stmt) stmtBegin = tokenizer.Position - 1 } else if tkn == 0 || tkn == eofChar { blobTail := tokenizer.Position - 2 if stmtBegin < blobTail { stmt = blob[stmtBegin : blobTail+1] pieces = append(pieces, stmt) } break } } err = tokenizer.LastError return } // SQLNode defines the interface for all nodes // generated by the parser. type SQLNode interface { Format(buf *TrackedBuffer) // walkSubtree calls visit on all underlying nodes // of the subtree, but not the current one. Walking // must be interrupted if visit returns an error. walkSubtree(visit Visit) error } // Visit defines the signature of a function that // can be used to visit all nodes of a parse tree. type Visit func(node SQLNode) (kontinue bool, err error) // Walk calls visit on every node. // If visit returns true, the underlying nodes // are also visited. If it returns an error, walking // is interrupted, and the error is returned. func Walk(visit Visit, nodes ...SQLNode) error { for _, node := range nodes { if node == nil { continue } kontinue, err := visit(node) if err != nil { return err } if kontinue { err = node.walkSubtree(visit) if err != nil { return err } } } return nil } // String returns a string representation of an SQLNode. func String(node SQLNode) string { if node == nil { return "" } buf := NewTrackedBuffer(nil) buf.Myprintf("%v", node) return buf.String() } // Append appends the SQLNode to the buffer. func Append(buf *bytes.Buffer, node SQLNode) { tbuf := &TrackedBuffer{ Buffer: buf, } node.Format(tbuf) } // Statement represents a statement. type Statement interface { iStatement() SQLNode } func (*Union) iStatement() {} func (*Select) iStatement() {} func (*Stream) iStatement() {} func (*Insert) iStatement() {} func (*Update) iStatement() {} func (*Delete) iStatement() {} func (*Set) iStatement() {} func (*DBDDL) iStatement() {} func (*DDL) iStatement() {} func (*Show) iStatement() {} func (*Use) iStatement() {} func (*Begin) iStatement() {} func (*Commit) iStatement() {} func (*Rollback) iStatement() {} func (*OtherRead) iStatement() {} func (*OtherAdmin) iStatement() {} // ParenSelect can actually not be a top level statement, // but we have to allow it because it's a requirement // of SelectStatement. func (*ParenSelect) iStatement() {} // SelectStatement any SELECT statement. type SelectStatement interface { iSelectStatement() iStatement() iInsertRows() AddOrder(*Order) SetLimit(*Limit) SQLNode } func (*Select) iSelectStatement() {} func (*Union) iSelectStatement() {} func (*ParenSelect) iSelectStatement() {} // Select represents a SELECT statement. type Select struct { Cache string Comments Comments Distinct string Hints string SelectExprs SelectExprs From TableExprs Where *Where GroupBy GroupBy Having *Where OrderBy OrderBy Limit *Limit Lock string } // Select.Distinct const ( DistinctStr = "distinct " StraightJoinHint = "straight_join " ) // Select.Lock const ( ForUpdateStr = " for update" ShareModeStr = " lock in share mode" ) // Select.Cache const ( SQLCacheStr = "sql_cache " SQLNoCacheStr = "sql_no_cache " ) // AddOrder adds an order by element func (node *Select) AddOrder(order *Order) { node.OrderBy = append(node.OrderBy, order) } // SetLimit sets the limit clause func (node *Select) SetLimit(limit *Limit) { node.Limit = limit } // Format formats the node. func (node *Select) Format(buf *TrackedBuffer) { buf.Myprintf("select %v%s%s%s%v from %v%v%v%v%v%v%s", node.Comments, node.Cache, node.Distinct, node.Hints, node.SelectExprs, node.From, node.Where, node.GroupBy, node.Having, node.OrderBy, node.Limit, node.Lock) } func (node *Select) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Comments, node.SelectExprs, node.From, node.Where, node.GroupBy, node.Having, node.OrderBy, node.Limit, ) } // AddWhere adds the boolean expression to the // WHERE clause as an AND condition. If the expression // is an OR clause, it parenthesizes it. Currently, // the OR operator is the only one that's lower precedence // than AND. func (node *Select) AddWhere(expr Expr) { if _, ok := expr.(*OrExpr); ok { expr = &ParenExpr{Expr: expr} } if node.Where == nil { node.Where = &Where{ Type: WhereStr, Expr: expr, } return } node.Where.Expr = &AndExpr{ Left: node.Where.Expr, Right: expr, } return } // AddHaving adds the boolean expression to the // HAVING clause as an AND condition. If the expression // is an OR clause, it parenthesizes it. Currently, // the OR operator is the only one that's lower precedence // than AND. func (node *Select) AddHaving(expr Expr) { if _, ok := expr.(*OrExpr); ok { expr = &ParenExpr{Expr: expr} } if node.Having == nil { node.Having = &Where{ Type: HavingStr, Expr: expr, } return } node.Having.Expr = &AndExpr{ Left: node.Having.Expr, Right: expr, } return } // ParenSelect is a parenthesized SELECT statement. type ParenSelect struct { Select SelectStatement } // AddOrder adds an order by element func (node *ParenSelect) AddOrder(order *Order) { panic("unreachable") } // SetLimit sets the limit clause func (node *ParenSelect) SetLimit(limit *Limit) { panic("unreachable") } // Format formats the node. func (node *ParenSelect) Format(buf *TrackedBuffer) { buf.Myprintf("(%v)", node.Select) } func (node *ParenSelect) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Select, ) } // Union represents a UNION statement. type Union struct { Type string Left, Right SelectStatement OrderBy OrderBy Limit *Limit Lock string } // Union.Type const ( UnionStr = "union" UnionAllStr = "union all" UnionDistinctStr = "union distinct" ) // AddOrder adds an order by element func (node *Union) AddOrder(order *Order) { node.OrderBy = append(node.OrderBy, order) } // SetLimit sets the limit clause func (node *Union) SetLimit(limit *Limit) { node.Limit = limit } // Format formats the node. func (node *Union) Format(buf *TrackedBuffer) { buf.Myprintf("%v %s %v%v%v%s", node.Left, node.Type, node.Right, node.OrderBy, node.Limit, node.Lock) } func (node *Union) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Left, node.Right, ) } // Stream represents a SELECT statement. type Stream struct { Comments Comments SelectExpr SelectExpr Table TableName } // Format formats the node. func (node *Stream) Format(buf *TrackedBuffer) { buf.Myprintf("stream %v%v from %v", node.Comments, node.SelectExpr, node.Table) } func (node *Stream) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Comments, node.SelectExpr, node.Table, ) } // Insert represents an INSERT or REPLACE statement. // Per the MySQL docs, http://dev.mysql.com/doc/refman/5.7/en/replace.html // Replace is the counterpart to `INSERT IGNORE`, and works exactly like a // normal INSERT except if the row exists. In that case it first deletes // the row and re-inserts with new values. For that reason we keep it as an Insert struct. // Replaces are currently disallowed in sharded schemas because // of the implications the deletion part may have on vindexes. // If you add fields here, consider adding them to calls to validateSubquerySamePlan. type Insert struct { Action string Comments Comments Ignore string Table TableName Partitions Partitions Columns Columns Rows InsertRows OnDup OnDup } // DDL strings. const ( InsertStr = "insert" ReplaceStr = "replace" ) // Format formats the node. func (node *Insert) Format(buf *TrackedBuffer) { buf.Myprintf("%s %v%sinto %v%v%v %v%v", node.Action, node.Comments, node.Ignore, node.Table, node.Partitions, node.Columns, node.Rows, node.OnDup) } func (node *Insert) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Comments, node.Table, node.Columns, node.Rows, node.OnDup, ) } // InsertRows represents the rows for an INSERT statement. type InsertRows interface { iInsertRows() SQLNode } func (*Select) iInsertRows() {} func (*Union) iInsertRows() {} func (Values) iInsertRows() {} func (*ParenSelect) iInsertRows() {} // Update represents an UPDATE statement. // If you add fields here, consider adding them to calls to validateSubquerySamePlan. type Update struct { Comments Comments Ignore string TableExprs TableExprs Exprs UpdateExprs Where *Where OrderBy OrderBy Limit *Limit } // Format formats the node. func (node *Update) Format(buf *TrackedBuffer) { buf.Myprintf("update %v%s%v set %v%v%v%v", node.Comments, node.Ignore, node.TableExprs, node.Exprs, node.Where, node.OrderBy, node.Limit) } func (node *Update) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Comments, node.TableExprs, node.Exprs, node.Where, node.OrderBy, node.Limit, ) } // Delete represents a DELETE statement. // If you add fields here, consider adding them to calls to validateSubquerySamePlan. type Delete struct { Comments Comments Targets TableNames TableExprs TableExprs Partitions Partitions Where *Where OrderBy OrderBy Limit *Limit } // Format formats the node. func (node *Delete) Format(buf *TrackedBuffer) { buf.Myprintf("delete %v", node.Comments) if node.Targets != nil { buf.Myprintf("%v ", node.Targets) } buf.Myprintf("from %v%v%v%v%v", node.TableExprs, node.Partitions, node.Where, node.OrderBy, node.Limit) } func (node *Delete) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Comments, node.Targets, node.TableExprs, node.Where, node.OrderBy, node.Limit, ) } // Set represents a SET statement. type Set struct { Comments Comments Exprs SetExprs Scope string } // Set.Scope or Show.Scope const ( SessionStr = "session" GlobalStr = "global" ImplicitStr = "" ) // Format formats the node. func (node *Set) Format(buf *TrackedBuffer) { if node.Scope == "" { buf.Myprintf("set %v%v", node.Comments, node.Exprs) } else { buf.Myprintf("set %v%s %v", node.Comments, node.Scope, node.Exprs) } } func (node *Set) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Comments, node.Exprs, ) } // DBDDL represents a CREATE, DROP database statement. type DBDDL struct { Action string DBName string IfExists bool Collate string Charset string } // Format formats the node. func (node *DBDDL) Format(buf *TrackedBuffer) { switch node.Action { case CreateStr: buf.WriteString(fmt.Sprintf("%s database %s", node.Action, node.DBName)) case DropStr: exists := "" if node.IfExists { exists = " if exists" } buf.WriteString(fmt.Sprintf("%s database%s %v", node.Action, exists, node.DBName)) } } // walkSubtree walks the nodes of the subtree. func (node *DBDDL) walkSubtree(visit Visit) error { return nil } // DDL represents a CREATE, ALTER, DROP, RENAME, TRUNCATE or ANALYZE statement. type DDL struct { Action string // FromTables is set if Action is RenameStr or DropStr. FromTables TableNames // ToTables is set if Action is RenameStr. ToTables TableNames // Table is set if Action is other than RenameStr or DropStr. Table TableName // The following fields are set if a DDL was fully analyzed. IfExists bool TableSpec *TableSpec OptLike *OptLike PartitionSpec *PartitionSpec // VindexSpec is set for CreateVindexStr, DropVindexStr, AddColVindexStr, DropColVindexStr. VindexSpec *VindexSpec // VindexCols is set for AddColVindexStr. VindexCols []ColIdent } // DDL strings. const ( CreateStr = "create" AlterStr = "alter" DropStr = "drop" RenameStr = "rename" TruncateStr = "truncate" FlushStr = "flush" CreateVindexStr = "create vindex" DropVindexStr = "drop vindex" AddVschemaTableStr = "add vschema table" DropVschemaTableStr = "drop vschema table" AddColVindexStr = "on table add vindex" DropColVindexStr = "on table drop vindex" // Vindex DDL param to specify the owner of a vindex VindexOwnerStr = "owner" ) // Format formats the node. func (node *DDL) Format(buf *TrackedBuffer) { switch node.Action { case CreateStr: if node.OptLike != nil { buf.Myprintf("%s table %v %v", node.Action, node.Table, node.OptLike) } else if node.TableSpec != nil { buf.Myprintf("%s table %v %v", node.Action, node.Table, node.TableSpec) } else { buf.Myprintf("%s table %v", node.Action, node.Table) } case DropStr: exists := "" if node.IfExists { exists = " if exists" } buf.Myprintf("%s table%s %v", node.Action, exists, node.FromTables) case RenameStr: buf.Myprintf("%s table %v to %v", node.Action, node.FromTables[0], node.ToTables[0]) for i := 1; i < len(node.FromTables); i++ { buf.Myprintf(", %v to %v", node.FromTables[i], node.ToTables[i]) } case AlterStr: if node.PartitionSpec != nil { buf.Myprintf("%s table %v %v", node.Action, node.Table, node.PartitionSpec) } else { buf.Myprintf("%s table %v", node.Action, node.Table) } case FlushStr: buf.Myprintf("%s", node.Action) case CreateVindexStr: buf.Myprintf("alter vschema create vindex %v %v", node.VindexSpec.Name, node.VindexSpec) case DropVindexStr: buf.Myprintf("alter vschema drop vindex %v", node.VindexSpec.Name) case AddVschemaTableStr: buf.Myprintf("alter vschema add table %v", node.Table) case DropVschemaTableStr: buf.Myprintf("alter vschema drop table %v", node.Table) case AddColVindexStr: buf.Myprintf("alter vschema on %v add vindex %v (", node.Table, node.VindexSpec.Name) for i, col := range node.VindexCols { if i != 0 { buf.Myprintf(", %v", col) } else { buf.Myprintf("%v", col) } } buf.Myprintf(")") if node.VindexSpec.Type.String() != "" { buf.Myprintf(" %v", node.VindexSpec) } case DropColVindexStr: buf.Myprintf("alter vschema on %v drop vindex %v", node.Table, node.VindexSpec.Name) default: buf.Myprintf("%s table %v", node.Action, node.Table) } } func (node *DDL) walkSubtree(visit Visit) error { if node == nil { return nil } for _, t := range node.AffectedTables() { if err := Walk(visit, t); err != nil { return err } } return nil } // AffectedTables returns the list table names affected by the DDL. func (node *DDL) AffectedTables() TableNames { if node.Action == RenameStr || node.Action == DropStr { list := make(TableNames, 0, len(node.FromTables)+len(node.ToTables)) list = append(list, node.FromTables...) list = append(list, node.ToTables...) return list } return TableNames{node.Table} } // Partition strings const ( ReorganizeStr = "reorganize partition" ) // OptLike works for create table xxx like xxx type OptLike struct { LikeTable TableName } // Format formats the node. func (node *OptLike) Format(buf *TrackedBuffer) { buf.Myprintf("like %v", node.LikeTable) } func (node *OptLike) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk(visit, node.LikeTable) } // PartitionSpec describe partition actions (for alter and create) type PartitionSpec struct { Action string Name ColIdent Definitions []*PartitionDefinition } // Format formats the node. func (node *PartitionSpec) Format(buf *TrackedBuffer) { switch node.Action { case ReorganizeStr: buf.Myprintf("%s %v into (", node.Action, node.Name) var prefix string for _, pd := range node.Definitions { buf.Myprintf("%s%v", prefix, pd) prefix = ", " } buf.Myprintf(")") default: panic("unimplemented") } } func (node *PartitionSpec) walkSubtree(visit Visit) error { if node == nil { return nil } if err := Walk(visit, node.Name); err != nil { return err } for _, def := range node.Definitions { if err := Walk(visit, def); err != nil { return err } } return nil } // PartitionDefinition describes a very minimal partition definition type PartitionDefinition struct { Name ColIdent Limit Expr Maxvalue bool } // Format formats the node func (node *PartitionDefinition) Format(buf *TrackedBuffer) { if !node.Maxvalue { buf.Myprintf("partition %v values less than (%v)", node.Name, node.Limit) } else { buf.Myprintf("partition %v values less than (maxvalue)", node.Name) } } func (node *PartitionDefinition) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Name, node.Limit, ) } // TableSpec describes the structure of a table from a CREATE TABLE statement type TableSpec struct { Columns []*ColumnDefinition Indexes []*IndexDefinition Constraints []*ConstraintDefinition Options string } // Format formats the node. func (ts *TableSpec) Format(buf *TrackedBuffer) { buf.Myprintf("(\n") for i, col := range ts.Columns { if i == 0 { buf.Myprintf("\t%v", col) } else { buf.Myprintf(",\n\t%v", col) } } for _, idx := range ts.Indexes { buf.Myprintf(",\n\t%v", idx) } for _, c := range ts.Constraints { buf.Myprintf(",\n\t%v", c) } buf.Myprintf("\n)%s", strings.Replace(ts.Options, ", ", ",\n ", -1)) } // AddColumn appends the given column to the list in the spec func (ts *TableSpec) AddColumn(cd *ColumnDefinition) { ts.Columns = append(ts.Columns, cd) } // AddIndex appends the given index to the list in the spec func (ts *TableSpec) AddIndex(id *IndexDefinition) { ts.Indexes = append(ts.Indexes, id) } // AddConstraint appends the given index to the list in the spec func (ts *TableSpec) AddConstraint(cd *ConstraintDefinition) { ts.Constraints = append(ts.Constraints, cd) } func (ts *TableSpec) walkSubtree(visit Visit) error { if ts == nil { return nil } for _, n := range ts.Columns { if err := Walk(visit, n); err != nil { return err } } for _, n := range ts.Indexes { if err := Walk(visit, n); err != nil { return err } } for _, n := range ts.Constraints { if err := Walk(visit, n); err != nil { return err } } return nil } // ColumnDefinition describes a column in a CREATE TABLE statement type ColumnDefinition struct { Name ColIdent Type ColumnType } // Format formats the node. func (col *ColumnDefinition) Format(buf *TrackedBuffer) { buf.Myprintf("%v %v", col.Name, &col.Type) } func (col *ColumnDefinition) walkSubtree(visit Visit) error { if col == nil { return nil } return Walk( visit, col.Name, &col.Type, ) } // ColumnType represents a sql type in a CREATE TABLE statement // All optional fields are nil if not specified type ColumnType struct { // The base type string Type string // Generic field options. NotNull BoolVal Autoincrement BoolVal Default *SQLVal OnUpdate *SQLVal Comment *SQLVal // Numeric field options Length *SQLVal Unsigned BoolVal Zerofill BoolVal Scale *SQLVal // Text field options Charset string Collate string // Enum values EnumValues []string // Key specification KeyOpt ColumnKeyOption } // Format returns a canonical string representation of the type and all relevant options func (ct *ColumnType) Format(buf *TrackedBuffer) { buf.Myprintf("%s", ct.Type) if ct.Length != nil && ct.Scale != nil { buf.Myprintf("(%v,%v)", ct.Length, ct.Scale) } else if ct.Length != nil { buf.Myprintf("(%v)", ct.Length) } if ct.EnumValues != nil { buf.Myprintf("(%s)", strings.Join(ct.EnumValues, ", ")) } opts := make([]string, 0, 16) if ct.Unsigned { opts = append(opts, keywordStrings[UNSIGNED]) } if ct.Zerofill { opts = append(opts, keywordStrings[ZEROFILL]) } if ct.Charset != "" { opts = append(opts, keywordStrings[CHARACTER], keywordStrings[SET], ct.Charset) } if ct.Collate != "" { opts = append(opts, keywordStrings[COLLATE], ct.Collate) } if ct.NotNull { opts = append(opts, keywordStrings[NOT], keywordStrings[NULL]) } if ct.Default != nil { opts = append(opts, keywordStrings[DEFAULT], String(ct.Default)) } if ct.OnUpdate != nil { opts = append(opts, keywordStrings[ON], keywordStrings[UPDATE], String(ct.OnUpdate)) } if ct.Autoincrement { opts = append(opts, keywordStrings[AUTO_INCREMENT]) } if ct.Comment != nil { opts = append(opts, keywordStrings[COMMENT_KEYWORD], String(ct.Comment)) } if ct.KeyOpt == colKeyPrimary { opts = append(opts, keywordStrings[PRIMARY], keywordStrings[KEY]) } if ct.KeyOpt == colKeyUnique { opts = append(opts, keywordStrings[UNIQUE]) } if ct.KeyOpt == colKeyUniqueKey { opts = append(opts, keywordStrings[UNIQUE], keywordStrings[KEY]) } if ct.KeyOpt == colKeySpatialKey { opts = append(opts, keywordStrings[SPATIAL], keywordStrings[KEY]) } if ct.KeyOpt == colKey { opts = append(opts, keywordStrings[KEY]) } if len(opts) != 0 { buf.Myprintf(" %s", strings.Join(opts, " ")) } } // DescribeType returns the abbreviated type information as required for // describe table func (ct *ColumnType) DescribeType() string { buf := NewTrackedBuffer(nil) buf.Myprintf("%s", ct.Type) if ct.Length != nil && ct.Scale != nil { buf.Myprintf("(%v,%v)", ct.Length, ct.Scale) } else if ct.Length != nil { buf.Myprintf("(%v)", ct.Length) } opts := make([]string, 0, 16) if ct.Unsigned { opts = append(opts, keywordStrings[UNSIGNED]) } if ct.Zerofill { opts = append(opts, keywordStrings[ZEROFILL]) } if len(opts) != 0 { buf.Myprintf(" %s", strings.Join(opts, " ")) } return buf.String() } // SQLType returns the sqltypes type code for the given column func (ct *ColumnType) SQLType() querypb.Type { switch ct.Type { case keywordStrings[TINYINT]: if ct.Unsigned { return sqltypes.Uint8 } return sqltypes.Int8 case keywordStrings[SMALLINT]: if ct.Unsigned { return sqltypes.Uint16 } return sqltypes.Int16 case keywordStrings[MEDIUMINT]: if ct.Unsigned { return sqltypes.Uint24 } return sqltypes.Int24 case keywordStrings[INT]: fallthrough case keywordStrings[INTEGER]: if ct.Unsigned { return sqltypes.Uint32 } return sqltypes.Int32 case keywordStrings[BIGINT]: if ct.Unsigned { return sqltypes.Uint64 } return sqltypes.Int64 case keywordStrings[TEXT]: return sqltypes.Text case keywordStrings[TINYTEXT]: return sqltypes.Text case keywordStrings[MEDIUMTEXT]: return sqltypes.Text case keywordStrings[LONGTEXT]: return sqltypes.Text case keywordStrings[BLOB]: return sqltypes.Blob case keywordStrings[TINYBLOB]: return sqltypes.Blob case keywordStrings[MEDIUMBLOB]: return sqltypes.Blob case keywordStrings[LONGBLOB]: return sqltypes.Blob case keywordStrings[CHAR]: return sqltypes.Char case keywordStrings[VARCHAR]: return sqltypes.VarChar case keywordStrings[BINARY]: return sqltypes.Binary case keywordStrings[VARBINARY]: return sqltypes.VarBinary case keywordStrings[DATE]: return sqltypes.Date case keywordStrings[TIME]: return sqltypes.Time case keywordStrings[DATETIME]: return sqltypes.Datetime case keywordStrings[TIMESTAMP]: return sqltypes.Timestamp case keywordStrings[YEAR]: return sqltypes.Year case keywordStrings[FLOAT_TYPE]: return sqltypes.Float32 case keywordStrings[DOUBLE]: return sqltypes.Float64 case keywordStrings[DECIMAL]: return sqltypes.Decimal case keywordStrings[BIT]: return sqltypes.Bit case keywordStrings[ENUM]: return sqltypes.Enum case keywordStrings[SET]: return sqltypes.Set case keywordStrings[JSON]: return sqltypes.TypeJSON case keywordStrings[GEOMETRY]: return sqltypes.Geometry case keywordStrings[POINT]: return sqltypes.Geometry case keywordStrings[LINESTRING]: return sqltypes.Geometry case keywordStrings[POLYGON]: return sqltypes.Geometry case keywordStrings[GEOMETRYCOLLECTION]: return sqltypes.Geometry case keywordStrings[MULTIPOINT]: return sqltypes.Geometry case keywordStrings[MULTILINESTRING]: return sqltypes.Geometry case keywordStrings[MULTIPOLYGON]: return sqltypes.Geometry } panic("unimplemented type " + ct.Type) } func (ct *ColumnType) walkSubtree(visit Visit) error { return nil } // IndexDefinition describes an index in a CREATE TABLE statement type IndexDefinition struct { Info *IndexInfo Columns []*IndexColumn Options []*IndexOption } // Format formats the node. func (idx *IndexDefinition) Format(buf *TrackedBuffer) { buf.Myprintf("%v (", idx.Info) for i, col := range idx.Columns { if i != 0 { buf.Myprintf(", %v", col.Column) } else { buf.Myprintf("%v", col.Column) } if col.Length != nil { buf.Myprintf("(%v)", col.Length) } } buf.Myprintf(")") for _, opt := range idx.Options { buf.Myprintf(" %s", opt.Name) if opt.Using != "" { buf.Myprintf(" %s", opt.Using) } else { buf.Myprintf(" %v", opt.Value) } } } func (idx *IndexDefinition) walkSubtree(visit Visit) error { if idx == nil { return nil } for _, n := range idx.Columns { if err := Walk(visit, n.Column); err != nil { return err } } return nil } // IndexInfo describes the name and type of an index in a CREATE TABLE statement type IndexInfo struct { Type string Name ColIdent Primary bool Spatial bool Unique bool } // Format formats the node. func (ii *IndexInfo) Format(buf *TrackedBuffer) { if ii.Primary { buf.Myprintf("%s", ii.Type) } else { buf.Myprintf("%s", ii.Type) if !ii.Name.IsEmpty() { buf.Myprintf(" %v", ii.Name) } } } func (ii *IndexInfo) walkSubtree(visit Visit) error { return Walk(visit, ii.Name) } // IndexColumn describes a column in an index definition with optional length type IndexColumn struct { Column ColIdent Length *SQLVal } // LengthScaleOption is used for types that have an optional length // and scale type LengthScaleOption struct { Length *SQLVal Scale *SQLVal } // IndexOption is used for trailing options for indexes: COMMENT, KEY_BLOCK_SIZE, USING type IndexOption struct { Name string Value *SQLVal Using string } // ColumnKeyOption indicates whether or not the given column is defined as an // index element and contains the type of the option type ColumnKeyOption int const ( colKeyNone ColumnKeyOption = iota colKeyPrimary colKeySpatialKey colKeyUnique colKeyUniqueKey colKey ) // VindexSpec defines a vindex for a CREATE VINDEX or DROP VINDEX statement type VindexSpec struct { Name ColIdent Type ColIdent Params []VindexParam } // ParseParams parses the vindex parameter list, pulling out the special-case // "owner" parameter func (node *VindexSpec) ParseParams() (string, map[string]string) { var owner string params := map[string]string{} for _, p := range node.Params { if p.Key.Lowered() == VindexOwnerStr { owner = p.Val } else { params[p.Key.String()] = p.Val } } return owner, params } // Format formats the node. The "CREATE VINDEX" preamble was formatted in // the containing DDL node Format, so this just prints the type, any // parameters, and optionally the owner func (node *VindexSpec) Format(buf *TrackedBuffer) { buf.Myprintf("using %v", node.Type) numParams := len(node.Params) if numParams != 0 { buf.Myprintf(" with ") for i, p := range node.Params { if i != 0 { buf.Myprintf(", ") } buf.Myprintf("%v", p) } } } func (node *VindexSpec) walkSubtree(visit Visit) error { err := Walk(visit, node.Name, ) if err != nil { return err } for _, p := range node.Params { err := Walk(visit, p) if err != nil { return err } } return nil } // VindexParam defines a key/value parameter for a CREATE VINDEX statement type VindexParam struct { Key ColIdent Val string } // Format formats the node. func (node VindexParam) Format(buf *TrackedBuffer) { buf.Myprintf("%s=%s", node.Key.String(), node.Val) } func (node VindexParam) walkSubtree(visit Visit) error { return Walk(visit, node.Key, ) } // ConstraintDefinition describes a constraint in a CREATE TABLE statement type ConstraintDefinition struct { Name string Details ConstraintInfo } // ConstraintInfo details a constraint in a CREATE TABLE statement type ConstraintInfo interface { SQLNode constraintInfo() } // Format formats the node. func (c *ConstraintDefinition) Format(buf *TrackedBuffer) { if c.Name != "" { buf.Myprintf("constraint %s ", c.Name) } c.Details.Format(buf) } func (c *ConstraintDefinition) walkSubtree(visit Visit) error { return Walk(visit, c.Details) } // ReferenceAction indicates the action takes by a referential constraint e.g. // the `CASCADE` in a `FOREIGN KEY .. ON DELETE CASCADE` table definition. type ReferenceAction int // These map to the SQL-defined reference actions. // See https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html#foreign-keys-referential-actions const ( // DefaultAction indicates no action was explicitly specified. DefaultAction ReferenceAction = iota Restrict Cascade NoAction SetNull SetDefault ) func (a ReferenceAction) walkSubtree(visit Visit) error { return nil } // Format formats the node. func (a ReferenceAction) Format(buf *TrackedBuffer) { switch a { case Restrict: buf.WriteString("restrict") case Cascade: buf.WriteString("cascade") case NoAction: buf.WriteString("no action") case SetNull: buf.WriteString("set null") case SetDefault: buf.WriteString("set default") } } // ForeignKeyDefinition describes a foreign key in a CREATE TABLE statement type ForeignKeyDefinition struct { Source Columns ReferencedTable TableName ReferencedColumns Columns OnDelete ReferenceAction OnUpdate ReferenceAction } var _ ConstraintInfo = &ForeignKeyDefinition{} // Format formats the node. func (f *ForeignKeyDefinition) Format(buf *TrackedBuffer) { buf.Myprintf("foreign key %v references %v %v", f.Source, f.ReferencedTable, f.ReferencedColumns) if f.OnDelete != DefaultAction { buf.Myprintf(" on delete %v", f.OnDelete) } if f.OnUpdate != DefaultAction { buf.Myprintf(" on update %v", f.OnUpdate) } } func (f *ForeignKeyDefinition) constraintInfo() {} func (f *ForeignKeyDefinition) walkSubtree(visit Visit) error { if err := Walk(visit, f.Source); err != nil { return err } if err := Walk(visit, f.ReferencedTable); err != nil { return err } return Walk(visit, f.ReferencedColumns) } // Show represents a show statement. type Show struct { Type string OnTable TableName ShowTablesOpt *ShowTablesOpt Scope string ShowCollationFilterOpt *Expr } // Format formats the node. func (node *Show) Format(buf *TrackedBuffer) { if (node.Type == "tables" || node.Type == "columns" || node.Type == "fields") && node.ShowTablesOpt != nil { opt := node.ShowTablesOpt buf.Myprintf("show %s%s", opt.Full, node.Type) if (node.Type == "columns" || node.Type == "fields") && node.HasOnTable() { buf.Myprintf(" from %v", node.OnTable) } if opt.DbName != "" { buf.Myprintf(" from %s", opt.DbName) } buf.Myprintf("%v", opt.Filter) return } if node.Scope == "" { buf.Myprintf("show %s", node.Type) } else { buf.Myprintf("show %s %s", node.Scope, node.Type) } if node.HasOnTable() { buf.Myprintf(" on %v", node.OnTable) } if node.Type == "collation" && node.ShowCollationFilterOpt != nil { buf.Myprintf(" where %v", *node.ShowCollationFilterOpt) } } // HasOnTable returns true if the show statement has an "on" clause func (node *Show) HasOnTable() bool { return node.OnTable.Name.v != "" } func (node *Show) walkSubtree(visit Visit) error { return nil } // ShowTablesOpt is show tables option type ShowTablesOpt struct { Full string DbName string Filter *ShowFilter } // ShowFilter is show tables filter type ShowFilter struct { Like string Filter Expr } // Format formats the node. func (node *ShowFilter) Format(buf *TrackedBuffer) { if node == nil { return } if node.Like != "" { buf.Myprintf(" like '%s'", node.Like) } else { buf.Myprintf(" where %v", node.Filter) } } func (node *ShowFilter) walkSubtree(visit Visit) error { return nil } // Use represents a use statement. type Use struct { DBName TableIdent } // Format formats the node. func (node *Use) Format(buf *TrackedBuffer) { if node.DBName.v != "" { buf.Myprintf("use %v", node.DBName) } else { buf.Myprintf("use") } } func (node *Use) walkSubtree(visit Visit) error { return Walk(visit, node.DBName) } // Begin represents a Begin statement. type Begin struct{} // Format formats the node. func (node *Begin) Format(buf *TrackedBuffer) { buf.WriteString("begin") } func (node *Begin) walkSubtree(visit Visit) error { return nil } // Commit represents a Commit statement. type Commit struct{} // Format formats the node. func (node *Commit) Format(buf *TrackedBuffer) { buf.WriteString("commit") } func (node *Commit) walkSubtree(visit Visit) error { return nil } // Rollback represents a Rollback statement. type Rollback struct{} // Format formats the node. func (node *Rollback) Format(buf *TrackedBuffer) { buf.WriteString("rollback") } func (node *Rollback) walkSubtree(visit Visit) error { return nil } // OtherRead represents a DESCRIBE, or EXPLAIN statement. // It should be used only as an indicator. It does not contain // the full AST for the statement. type OtherRead struct{} // Format formats the node. func (node *OtherRead) Format(buf *TrackedBuffer) { buf.WriteString("otherread") } func (node *OtherRead) walkSubtree(visit Visit) error { return nil } // OtherAdmin represents a misc statement that relies on ADMIN privileges, // such as REPAIR, OPTIMIZE, or TRUNCATE statement. // It should be used only as an indicator. It does not contain // the full AST for the statement. type OtherAdmin struct{} // Format formats the node. func (node *OtherAdmin) Format(buf *TrackedBuffer) { buf.WriteString("otheradmin") } func (node *OtherAdmin) walkSubtree(visit Visit) error { return nil } // Comments represents a list of comments. type Comments [][]byte // Format formats the node. func (node Comments) Format(buf *TrackedBuffer) { for _, c := range node { buf.Myprintf("%s ", c) } } func (node Comments) walkSubtree(visit Visit) error { return nil } // SelectExprs represents SELECT expressions. type SelectExprs []SelectExpr // Format formats the node. func (node SelectExprs) Format(buf *TrackedBuffer) { var prefix string for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node SelectExprs) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // SelectExpr represents a SELECT expression. type SelectExpr interface { iSelectExpr() SQLNode } func (*StarExpr) iSelectExpr() {} func (*AliasedExpr) iSelectExpr() {} func (Nextval) iSelectExpr() {} // StarExpr defines a '*' or 'table.*' expression. type StarExpr struct { TableName TableName } // Format formats the node. func (node *StarExpr) Format(buf *TrackedBuffer) { if !node.TableName.IsEmpty() { buf.Myprintf("%v.", node.TableName) } buf.Myprintf("*") } func (node *StarExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.TableName, ) } // AliasedExpr defines an aliased SELECT expression. type AliasedExpr struct { Expr Expr As ColIdent } // Format formats the node. func (node *AliasedExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v", node.Expr) if !node.As.IsEmpty() { buf.Myprintf(" as %v", node.As) } } func (node *AliasedExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, node.As, ) } // Nextval defines the NEXT VALUE expression. type Nextval struct { Expr Expr } // Format formats the node. func (node Nextval) Format(buf *TrackedBuffer) { buf.Myprintf("next %v values", node.Expr) } func (node Nextval) walkSubtree(visit Visit) error { return Walk(visit, node.Expr) } // Columns represents an insert column list. type Columns []ColIdent // Format formats the node. func (node Columns) Format(buf *TrackedBuffer) { if node == nil { return } prefix := "(" for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } buf.WriteString(")") } func (node Columns) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // FindColumn finds a column in the column list, returning // the index if it exists or -1 otherwise func (node Columns) FindColumn(col ColIdent) int { for i, colName := range node { if colName.Equal(col) { return i } } return -1 } // Partitions is a type alias for Columns so we can handle printing efficiently type Partitions Columns // Format formats the node func (node Partitions) Format(buf *TrackedBuffer) { if node == nil { return } prefix := " partition (" for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } buf.WriteString(")") } func (node Partitions) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // TableExprs represents a list of table expressions. type TableExprs []TableExpr // Format formats the node. func (node TableExprs) Format(buf *TrackedBuffer) { var prefix string for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node TableExprs) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // TableExpr represents a table expression. type TableExpr interface { iTableExpr() SQLNode } func (*AliasedTableExpr) iTableExpr() {} func (*ParenTableExpr) iTableExpr() {} func (*JoinTableExpr) iTableExpr() {} // AliasedTableExpr represents a table expression // coupled with an optional alias or index hint. // If As is empty, no alias was used. type AliasedTableExpr struct { Expr SimpleTableExpr Partitions Partitions As TableIdent Hints *IndexHints } // Format formats the node. func (node *AliasedTableExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v%v", node.Expr, node.Partitions) if !node.As.IsEmpty() { buf.Myprintf(" as %v", node.As) } if node.Hints != nil { // Hint node provides the space padding. buf.Myprintf("%v", node.Hints) } } func (node *AliasedTableExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, node.As, node.Hints, ) } // RemoveHints returns a new AliasedTableExpr with the hints removed. func (node *AliasedTableExpr) RemoveHints() *AliasedTableExpr { noHints := *node noHints.Hints = nil return &noHints } // SimpleTableExpr represents a simple table expression. type SimpleTableExpr interface { iSimpleTableExpr() SQLNode } func (TableName) iSimpleTableExpr() {} func (*Subquery) iSimpleTableExpr() {} // TableNames is a list of TableName. type TableNames []TableName // Format formats the node. func (node TableNames) Format(buf *TrackedBuffer) { var prefix string for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node TableNames) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // TableName represents a table name. // Qualifier, if specified, represents a database or keyspace. // TableName is a value struct whose fields are case sensitive. // This means two TableName vars can be compared for equality // and a TableName can also be used as key in a map. type TableName struct { Name, Qualifier TableIdent } // Format formats the node. func (node TableName) Format(buf *TrackedBuffer) { if node.IsEmpty() { return } if !node.Qualifier.IsEmpty() { buf.Myprintf("%v.", node.Qualifier) } buf.Myprintf("%v", node.Name) } func (node TableName) walkSubtree(visit Visit) error { return Walk( visit, node.Name, node.Qualifier, ) } // IsEmpty returns true if TableName is nil or empty. func (node TableName) IsEmpty() bool { // If Name is empty, Qualifer is also empty. return node.Name.IsEmpty() } // ToViewName returns a TableName acceptable for use as a VIEW. VIEW names are // always lowercase, so ToViewName lowercasese the name. Databases are case-sensitive // so Qualifier is left untouched. func (node TableName) ToViewName() TableName { return TableName{ Qualifier: node.Qualifier, Name: NewTableIdent(strings.ToLower(node.Name.v)), } } // ParenTableExpr represents a parenthesized list of TableExpr. type ParenTableExpr struct { Exprs TableExprs } // Format formats the node. func (node *ParenTableExpr) Format(buf *TrackedBuffer) { buf.Myprintf("(%v)", node.Exprs) } func (node *ParenTableExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Exprs, ) } // JoinCondition represents the join conditions (either a ON or USING clause) // of a JoinTableExpr. type JoinCondition struct { On Expr Using Columns } // Format formats the node. func (node JoinCondition) Format(buf *TrackedBuffer) { if node.On != nil { buf.Myprintf(" on %v", node.On) } if node.Using != nil { buf.Myprintf(" using %v", node.Using) } } func (node JoinCondition) walkSubtree(visit Visit) error { return Walk( visit, node.On, node.Using, ) } // JoinTableExpr represents a TableExpr that's a JOIN operation. type JoinTableExpr struct { LeftExpr TableExpr Join string RightExpr TableExpr Condition JoinCondition } // JoinTableExpr.Join const ( JoinStr = "join" StraightJoinStr = "straight_join" LeftJoinStr = "left join" RightJoinStr = "right join" NaturalJoinStr = "natural join" NaturalLeftJoinStr = "natural left join" NaturalRightJoinStr = "natural right join" ) // Format formats the node. func (node *JoinTableExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v %s %v%v", node.LeftExpr, node.Join, node.RightExpr, node.Condition) } func (node *JoinTableExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.LeftExpr, node.RightExpr, node.Condition, ) } // IndexHints represents a list of index hints. type IndexHints struct { Type string Indexes []ColIdent } // Index hints. const ( UseStr = "use " IgnoreStr = "ignore " ForceStr = "force " ) // Format formats the node. func (node *IndexHints) Format(buf *TrackedBuffer) { buf.Myprintf(" %sindex ", node.Type) prefix := "(" for _, n := range node.Indexes { buf.Myprintf("%s%v", prefix, n) prefix = ", " } buf.Myprintf(")") } func (node *IndexHints) walkSubtree(visit Visit) error { if node == nil { return nil } for _, n := range node.Indexes { if err := Walk(visit, n); err != nil { return err } } return nil } // Where represents a WHERE or HAVING clause. type Where struct { Type string Expr Expr } // Where.Type const ( WhereStr = "where" HavingStr = "having" ) // NewWhere creates a WHERE or HAVING clause out // of a Expr. If the expression is nil, it returns nil. func NewWhere(typ string, expr Expr) *Where { if expr == nil { return nil } return &Where{Type: typ, Expr: expr} } // Format formats the node. func (node *Where) Format(buf *TrackedBuffer) { if node == nil || node.Expr == nil { return } buf.Myprintf(" %s %v", node.Type, node.Expr) } func (node *Where) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } // Expr represents an expression. type Expr interface { iExpr() // replace replaces any subexpression that matches // from with to. The implementation can use the // replaceExprs convenience function. replace(from, to Expr) bool SQLNode } func (*AndExpr) iExpr() {} func (*OrExpr) iExpr() {} func (*NotExpr) iExpr() {} func (*ParenExpr) iExpr() {} func (*ComparisonExpr) iExpr() {} func (*RangeCond) iExpr() {} func (*IsExpr) iExpr() {} func (*ExistsExpr) iExpr() {} func (*SQLVal) iExpr() {} func (*NullVal) iExpr() {} func (BoolVal) iExpr() {} func (*ColName) iExpr() {} func (ValTuple) iExpr() {} func (*Subquery) iExpr() {} func (ListArg) iExpr() {} func (*BinaryExpr) iExpr() {} func (*UnaryExpr) iExpr() {} func (*IntervalExpr) iExpr() {} func (*CollateExpr) iExpr() {} func (*FuncExpr) iExpr() {} func (*CaseExpr) iExpr() {} func (*ValuesFuncExpr) iExpr() {} func (*ConvertExpr) iExpr() {} func (*SubstrExpr) iExpr() {} func (*ConvertUsingExpr) iExpr() {} func (*MatchExpr) iExpr() {} func (*GroupConcatExpr) iExpr() {} func (*Default) iExpr() {} // ReplaceExpr finds the from expression from root // and replaces it with to. If from matches root, // then to is returned. func ReplaceExpr(root, from, to Expr) Expr { if root == from { return to } root.replace(from, to) return root } // replaceExprs is a convenience function used by implementors // of the replace method. func replaceExprs(from, to Expr, exprs ...*Expr) bool { for _, expr := range exprs { if *expr == nil { continue } if *expr == from { *expr = to return true } if (*expr).replace(from, to) { return true } } return false } // Exprs represents a list of value expressions. // It's not a valid expression because it's not parenthesized. type Exprs []Expr // Format formats the node. func (node Exprs) Format(buf *TrackedBuffer) { var prefix string for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node Exprs) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // AndExpr represents an AND expression. type AndExpr struct { Left, Right Expr } // Format formats the node. func (node *AndExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v and %v", node.Left, node.Right) } func (node *AndExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Left, node.Right, ) } func (node *AndExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Left, &node.Right) } // OrExpr represents an OR expression. type OrExpr struct { Left, Right Expr } // Format formats the node. func (node *OrExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v or %v", node.Left, node.Right) } func (node *OrExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Left, node.Right, ) } func (node *OrExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Left, &node.Right) } // NotExpr represents a NOT expression. type NotExpr struct { Expr Expr } // Format formats the node. func (node *NotExpr) Format(buf *TrackedBuffer) { buf.Myprintf("not %v", node.Expr) } func (node *NotExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } func (node *NotExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Expr) } // ParenExpr represents a parenthesized boolean expression. type ParenExpr struct { Expr Expr } // Format formats the node. func (node *ParenExpr) Format(buf *TrackedBuffer) { buf.Myprintf("(%v)", node.Expr) } func (node *ParenExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } func (node *ParenExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Expr) } // ComparisonExpr represents a two-value comparison expression. type ComparisonExpr struct { Operator string Left, Right Expr Escape Expr } // ComparisonExpr.Operator const ( EqualStr = "=" LessThanStr = "<" GreaterThanStr = ">" LessEqualStr = "<=" GreaterEqualStr = ">=" NotEqualStr = "!=" NullSafeEqualStr = "<=>" InStr = "in" NotInStr = "not in" LikeStr = "like" NotLikeStr = "not like" RegexpStr = "regexp" NotRegexpStr = "not regexp" JSONExtractOp = "->" JSONUnquoteExtractOp = "->>" ) // Format formats the node. func (node *ComparisonExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v %s %v", node.Left, node.Operator, node.Right) if node.Escape != nil { buf.Myprintf(" escape %v", node.Escape) } } func (node *ComparisonExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Left, node.Right, node.Escape, ) } func (node *ComparisonExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Left, &node.Right, &node.Escape) } // RangeCond represents a BETWEEN or a NOT BETWEEN expression. type RangeCond struct { Operator string Left Expr From, To Expr } // RangeCond.Operator const ( BetweenStr = "between" NotBetweenStr = "not between" ) // Format formats the node. func (node *RangeCond) Format(buf *TrackedBuffer) { buf.Myprintf("%v %s %v and %v", node.Left, node.Operator, node.From, node.To) } func (node *RangeCond) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Left, node.From, node.To, ) } func (node *RangeCond) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Left, &node.From, &node.To) } // IsExpr represents an IS ... or an IS NOT ... expression. type IsExpr struct { Operator string Expr Expr } // IsExpr.Operator const ( IsNullStr = "is null" IsNotNullStr = "is not null" IsTrueStr = "is true" IsNotTrueStr = "is not true" IsFalseStr = "is false" IsNotFalseStr = "is not false" ) // Format formats the node. func (node *IsExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v %s", node.Expr, node.Operator) } func (node *IsExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } func (node *IsExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Expr) } // ExistsExpr represents an EXISTS expression. type ExistsExpr struct { Subquery *Subquery } // Format formats the node. func (node *ExistsExpr) Format(buf *TrackedBuffer) { buf.Myprintf("exists %v", node.Subquery) } func (node *ExistsExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Subquery, ) } func (node *ExistsExpr) replace(from, to Expr) bool { return false } // ExprFromValue converts the given Value into an Expr or returns an error. func ExprFromValue(value sqltypes.Value) (Expr, error) { // The type checks here follow the rules defined in sqltypes/types.go. switch { case value.Type() == sqltypes.Null: return &NullVal{}, nil case value.IsIntegral(): return NewIntVal(value.ToBytes()), nil case value.IsFloat() || value.Type() == sqltypes.Decimal: return NewFloatVal(value.ToBytes()), nil case value.IsQuoted(): return NewStrVal(value.ToBytes()), nil default: // We cannot support sqltypes.Expression, or any other invalid type. return nil, vterrors.Errorf(vtrpcpb.Code_INTERNAL, "cannot convert value %v to AST", value) } } // ValType specifies the type for SQLVal. type ValType int // These are the possible Valtype values. // HexNum represents a 0x... value. It cannot // be treated as a simple value because it can // be interpreted differently depending on the // context. const ( StrVal = ValType(iota) IntVal FloatVal HexNum HexVal ValArg BitVal ) // SQLVal represents a single value. type SQLVal struct { Type ValType Val []byte } // NewStrVal builds a new StrVal. func NewStrVal(in []byte) *SQLVal { return &SQLVal{Type: StrVal, Val: in} } // NewIntVal builds a new IntVal. func NewIntVal(in []byte) *SQLVal { return &SQLVal{Type: IntVal, Val: in} } // NewFloatVal builds a new FloatVal. func NewFloatVal(in []byte) *SQLVal { return &SQLVal{Type: FloatVal, Val: in} } // NewHexNum builds a new HexNum. func NewHexNum(in []byte) *SQLVal { return &SQLVal{Type: HexNum, Val: in} } // NewHexVal builds a new HexVal. func NewHexVal(in []byte) *SQLVal { return &SQLVal{Type: HexVal, Val: in} } // NewBitVal builds a new BitVal containing a bit literal. func NewBitVal(in []byte) *SQLVal { return &SQLVal{Type: BitVal, Val: in} } // NewValArg builds a new ValArg. func NewValArg(in []byte) *SQLVal { return &SQLVal{Type: ValArg, Val: in} } // Format formats the node. func (node *SQLVal) Format(buf *TrackedBuffer) { switch node.Type { case StrVal: sqltypes.MakeTrusted(sqltypes.VarBinary, node.Val).EncodeSQL(buf) case IntVal, FloatVal, HexNum: buf.Myprintf("%s", []byte(node.Val)) case HexVal: buf.Myprintf("X'%s'", []byte(node.Val)) case BitVal: buf.Myprintf("B'%s'", []byte(node.Val)) case ValArg: buf.WriteArg(string(node.Val)) default: panic("unexpected") } } func (node *SQLVal) walkSubtree(visit Visit) error { return nil } func (node *SQLVal) replace(from, to Expr) bool { return false } // HexDecode decodes the hexval into bytes. func (node *SQLVal) HexDecode() ([]byte, error) { dst := make([]byte, hex.DecodedLen(len([]byte(node.Val)))) _, err := hex.Decode(dst, []byte(node.Val)) if err != nil { return nil, err } return dst, err } // NullVal represents a NULL value. type NullVal struct{} // Format formats the node. func (node *NullVal) Format(buf *TrackedBuffer) { buf.Myprintf("null") } func (node *NullVal) walkSubtree(visit Visit) error { return nil } func (node *NullVal) replace(from, to Expr) bool { return false } // BoolVal is true or false. type BoolVal bool // Format formats the node. func (node BoolVal) Format(buf *TrackedBuffer) { if node { buf.Myprintf("true") } else { buf.Myprintf("false") } } func (node BoolVal) walkSubtree(visit Visit) error { return nil } func (node BoolVal) replace(from, to Expr) bool { return false } // ColName represents a column name. type ColName struct { // Metadata is not populated by the parser. // It's a placeholder for analyzers to store // additional data, typically info about which // table or column this node references. Metadata interface{} Name ColIdent Qualifier TableName } // Format formats the node. func (node *ColName) Format(buf *TrackedBuffer) { if !node.Qualifier.IsEmpty() { buf.Myprintf("%v.", node.Qualifier) } buf.Myprintf("%v", node.Name) } func (node *ColName) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Name, node.Qualifier, ) } func (node *ColName) replace(from, to Expr) bool { return false } // Equal returns true if the column names match. func (node *ColName) Equal(c *ColName) bool { // Failsafe: ColName should not be empty. if node == nil || c == nil { return false } return node.Name.Equal(c.Name) && node.Qualifier == c.Qualifier } // ColTuple represents a list of column values. // It can be ValTuple, Subquery, ListArg. type ColTuple interface { iColTuple() Expr } func (ValTuple) iColTuple() {} func (*Subquery) iColTuple() {} func (ListArg) iColTuple() {} // ValTuple represents a tuple of actual values. type ValTuple Exprs // Format formats the node. func (node ValTuple) Format(buf *TrackedBuffer) { buf.Myprintf("(%v)", Exprs(node)) } func (node ValTuple) walkSubtree(visit Visit) error { return Walk(visit, Exprs(node)) } func (node ValTuple) replace(from, to Expr) bool { for i := range node { if replaceExprs(from, to, &node[i]) { return true } } return false } // Subquery represents a subquery. type Subquery struct { Select SelectStatement } // Format formats the node. func (node *Subquery) Format(buf *TrackedBuffer) { buf.Myprintf("(%v)", node.Select) } func (node *Subquery) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Select, ) } func (node *Subquery) replace(from, to Expr) bool { return false } // ListArg represents a named list argument. type ListArg []byte // Format formats the node. func (node ListArg) Format(buf *TrackedBuffer) { buf.WriteArg(string(node)) } func (node ListArg) walkSubtree(visit Visit) error { return nil } func (node ListArg) replace(from, to Expr) bool { return false } // BinaryExpr represents a binary value expression. type BinaryExpr struct { Operator string Left, Right Expr } // BinaryExpr.Operator const ( BitAndStr = "&" BitOrStr = "|" BitXorStr = "^" PlusStr = "+" MinusStr = "-" MultStr = "*" DivStr = "/" IntDivStr = "div" ModStr = "%" ShiftLeftStr = "<<" ShiftRightStr = ">>" ) // Format formats the node. func (node *BinaryExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v %s %v", node.Left, node.Operator, node.Right) } func (node *BinaryExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Left, node.Right, ) } func (node *BinaryExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Left, &node.Right) } // UnaryExpr represents a unary value expression. type UnaryExpr struct { Operator string Expr Expr } // UnaryExpr.Operator const ( UPlusStr = "+" UMinusStr = "-" TildaStr = "~" BangStr = "!" BinaryStr = "binary " UBinaryStr = "_binary " Utf8mb4Str = "_utf8mb4 " ) // Format formats the node. func (node *UnaryExpr) Format(buf *TrackedBuffer) { if _, unary := node.Expr.(*UnaryExpr); unary { buf.Myprintf("%s %v", node.Operator, node.Expr) return } buf.Myprintf("%s%v", node.Operator, node.Expr) } func (node *UnaryExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } func (node *UnaryExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Expr) } // IntervalExpr represents a date-time INTERVAL expression. type IntervalExpr struct { Expr Expr Unit string } // Format formats the node. func (node *IntervalExpr) Format(buf *TrackedBuffer) { buf.Myprintf("interval %v %s", node.Expr, node.Unit) } func (node *IntervalExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } func (node *IntervalExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Expr) } // CollateExpr represents dynamic collate operator. type CollateExpr struct { Expr Expr Charset string } // Format formats the node. func (node *CollateExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v collate %s", node.Expr, node.Charset) } func (node *CollateExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } func (node *CollateExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Expr) } // FuncExpr represents a function call. type FuncExpr struct { Qualifier TableIdent Name ColIdent Distinct bool Exprs SelectExprs } // Format formats the node. func (node *FuncExpr) Format(buf *TrackedBuffer) { var distinct string if node.Distinct { distinct = "distinct " } if !node.Qualifier.IsEmpty() { buf.Myprintf("%v.", node.Qualifier) } // Function names should not be back-quoted even // if they match a reserved word. So, print the // name as is. buf.Myprintf("%s(%s%v)", node.Name.String(), distinct, node.Exprs) } func (node *FuncExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Qualifier, node.Name, node.Exprs, ) } func (node *FuncExpr) replace(from, to Expr) bool { for _, sel := range node.Exprs { aliased, ok := sel.(*AliasedExpr) if !ok { continue } if replaceExprs(from, to, &aliased.Expr) { return true } } return false } // Aggregates is a map of all aggregate functions. var Aggregates = map[string]bool{ "avg": true, "bit_and": true, "bit_or": true, "bit_xor": true, "count": true, "group_concat": true, "max": true, "min": true, "std": true, "stddev_pop": true, "stddev_samp": true, "stddev": true, "sum": true, "var_pop": true, "var_samp": true, "variance": true, } // IsAggregate returns true if the function is an aggregate. func (node *FuncExpr) IsAggregate() bool { return Aggregates[node.Name.Lowered()] } // GroupConcatExpr represents a call to GROUP_CONCAT type GroupConcatExpr struct { Distinct string Exprs SelectExprs OrderBy OrderBy Separator string } // Format formats the node func (node *GroupConcatExpr) Format(buf *TrackedBuffer) { buf.Myprintf("group_concat(%s%v%v%s)", node.Distinct, node.Exprs, node.OrderBy, node.Separator) } func (node *GroupConcatExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Exprs, node.OrderBy, ) } func (node *GroupConcatExpr) replace(from, to Expr) bool { for _, sel := range node.Exprs { aliased, ok := sel.(*AliasedExpr) if !ok { continue } if replaceExprs(from, to, &aliased.Expr) { return true } } for _, order := range node.OrderBy { if replaceExprs(from, to, &order.Expr) { return true } } return false } // ValuesFuncExpr represents a function call. type ValuesFuncExpr struct { Name *ColName } // Format formats the node. func (node *ValuesFuncExpr) Format(buf *TrackedBuffer) { buf.Myprintf("values(%v)", node.Name) } func (node *ValuesFuncExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Name, ) } func (node *ValuesFuncExpr) replace(from, to Expr) bool { return false } // SubstrExpr represents a call to SubstrExpr(column, value_expression) or SubstrExpr(column, value_expression,value_expression) // also supported syntax SubstrExpr(column from value_expression for value_expression). // Additionally to column names, SubstrExpr is also supported for string values, e.g.: // SubstrExpr('static string value', value_expression, value_expression) // In this case StrVal will be set instead of Name. type SubstrExpr struct { Name *ColName StrVal *SQLVal From Expr To Expr } // Format formats the node. func (node *SubstrExpr) Format(buf *TrackedBuffer) { var val interface{} if node.Name != nil { val = node.Name } else { val = node.StrVal } if node.To == nil { buf.Myprintf("substr(%v, %v)", val, node.From) } else { buf.Myprintf("substr(%v, %v, %v)", val, node.From, node.To) } } func (node *SubstrExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.From, &node.To) } func (node *SubstrExpr) walkSubtree(visit Visit) error { if node == nil || node.Name == nil { return nil } return Walk( visit, node.Name, node.From, node.To, ) } // ConvertExpr represents a call to CONVERT(expr, type) // or it's equivalent CAST(expr AS type). Both are rewritten to the former. type ConvertExpr struct { Expr Expr Type *ConvertType } // Format formats the node. func (node *ConvertExpr) Format(buf *TrackedBuffer) { buf.Myprintf("convert(%v, %v)", node.Expr, node.Type) } func (node *ConvertExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, node.Type, ) } func (node *ConvertExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Expr) } // ConvertUsingExpr represents a call to CONVERT(expr USING charset). type ConvertUsingExpr struct { Expr Expr Type string } // Format formats the node. func (node *ConvertUsingExpr) Format(buf *TrackedBuffer) { buf.Myprintf("convert(%v using %s)", node.Expr, node.Type) } func (node *ConvertUsingExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } func (node *ConvertUsingExpr) replace(from, to Expr) bool { return replaceExprs(from, to, &node.Expr) } // ConvertType represents the type in call to CONVERT(expr, type) type ConvertType struct { Type string Length *SQLVal Scale *SQLVal Operator string Charset string } // this string is "character set" and this comment is required const ( CharacterSetStr = " character set" CharsetStr = "charset" ) // Format formats the node. func (node *ConvertType) Format(buf *TrackedBuffer) { buf.Myprintf("%s", node.Type) if node.Length != nil { buf.Myprintf("(%v", node.Length) if node.Scale != nil { buf.Myprintf(", %v", node.Scale) } buf.Myprintf(")") } if node.Charset != "" { buf.Myprintf("%s %s", node.Operator, node.Charset) } } func (node *ConvertType) walkSubtree(visit Visit) error { return nil } // MatchExpr represents a call to the MATCH function type MatchExpr struct { Columns SelectExprs Expr Expr Option string } // MatchExpr.Option const ( BooleanModeStr = " in boolean mode" NaturalLanguageModeStr = " in natural language mode" NaturalLanguageModeWithQueryExpansionStr = " in natural language mode with query expansion" QueryExpansionStr = " with query expansion" ) // Format formats the node func (node *MatchExpr) Format(buf *TrackedBuffer) { buf.Myprintf("match(%v) against (%v%s)", node.Columns, node.Expr, node.Option) } func (node *MatchExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Columns, node.Expr, ) } func (node *MatchExpr) replace(from, to Expr) bool { for _, sel := range node.Columns { aliased, ok := sel.(*AliasedExpr) if !ok { continue } if replaceExprs(from, to, &aliased.Expr) { return true } } return replaceExprs(from, to, &node.Expr) } // CaseExpr represents a CASE expression. type CaseExpr struct { Expr Expr Whens []*When Else Expr } // Format formats the node. func (node *CaseExpr) Format(buf *TrackedBuffer) { buf.Myprintf("case ") if node.Expr != nil { buf.Myprintf("%v ", node.Expr) } for _, when := range node.Whens { buf.Myprintf("%v ", when) } if node.Else != nil { buf.Myprintf("else %v ", node.Else) } buf.Myprintf("end") } func (node *CaseExpr) walkSubtree(visit Visit) error { if node == nil { return nil } if err := Walk(visit, node.Expr); err != nil { return err } for _, n := range node.Whens { if err := Walk(visit, n); err != nil { return err } } return Walk(visit, node.Else) } func (node *CaseExpr) replace(from, to Expr) bool { for _, when := range node.Whens { if replaceExprs(from, to, &when.Cond, &when.Val) { return true } } return replaceExprs(from, to, &node.Expr, &node.Else) } // Default represents a DEFAULT expression. type Default struct { ColName string } // Format formats the node. func (node *Default) Format(buf *TrackedBuffer) { buf.Myprintf("default") if node.ColName != "" { buf.Myprintf("(%s)", node.ColName) } } func (node *Default) walkSubtree(visit Visit) error { return nil } func (node *Default) replace(from, to Expr) bool { return false } // When represents a WHEN sub-expression. type When struct { Cond Expr Val Expr } // Format formats the node. func (node *When) Format(buf *TrackedBuffer) { buf.Myprintf("when %v then %v", node.Cond, node.Val) } func (node *When) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Cond, node.Val, ) } // GroupBy represents a GROUP BY clause. type GroupBy []Expr // Format formats the node. func (node GroupBy) Format(buf *TrackedBuffer) { prefix := " group by " for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node GroupBy) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // OrderBy represents an ORDER By clause. type OrderBy []*Order // Format formats the node. func (node OrderBy) Format(buf *TrackedBuffer) { prefix := " order by " for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node OrderBy) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // Order represents an ordering expression. type Order struct { Expr Expr Direction string } // Order.Direction const ( AscScr = "asc" DescScr = "desc" ) // Format formats the node. func (node *Order) Format(buf *TrackedBuffer) { if node, ok := node.Expr.(*NullVal); ok { buf.Myprintf("%v", node) return } if node, ok := node.Expr.(*FuncExpr); ok { if node.Name.Lowered() == "rand" { buf.Myprintf("%v", node) return } } buf.Myprintf("%v %s", node.Expr, node.Direction) } func (node *Order) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Expr, ) } // Limit represents a LIMIT clause. type Limit struct { Offset, Rowcount Expr } // Format formats the node. func (node *Limit) Format(buf *TrackedBuffer) { if node == nil { return } buf.Myprintf(" limit ") if node.Offset != nil { buf.Myprintf("%v, ", node.Offset) } buf.Myprintf("%v", node.Rowcount) } func (node *Limit) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Offset, node.Rowcount, ) } // Values represents a VALUES clause. type Values []ValTuple // Format formats the node. func (node Values) Format(buf *TrackedBuffer) { prefix := "values " for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node Values) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // UpdateExprs represents a list of update expressions. type UpdateExprs []*UpdateExpr // Format formats the node. func (node UpdateExprs) Format(buf *TrackedBuffer) { var prefix string for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node UpdateExprs) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // UpdateExpr represents an update expression. type UpdateExpr struct { Name *ColName Expr Expr } // Format formats the node. func (node *UpdateExpr) Format(buf *TrackedBuffer) { buf.Myprintf("%v = %v", node.Name, node.Expr) } func (node *UpdateExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Name, node.Expr, ) } // SetExprs represents a list of set expressions. type SetExprs []*SetExpr // Format formats the node. func (node SetExprs) Format(buf *TrackedBuffer) { var prefix string for _, n := range node { buf.Myprintf("%s%v", prefix, n) prefix = ", " } } func (node SetExprs) walkSubtree(visit Visit) error { for _, n := range node { if err := Walk(visit, n); err != nil { return err } } return nil } // SetExpr represents a set expression. type SetExpr struct { Name ColIdent Expr Expr } // SetExpr.Expr, for SET TRANSACTION ... or START TRANSACTION const ( // TransactionStr is the Name for a SET TRANSACTION statement TransactionStr = "transaction" IsolationLevelReadUncommitted = "isolation level read uncommitted" IsolationLevelReadCommitted = "isolation level read committed" IsolationLevelRepeatableRead = "isolation level repeatable read" IsolationLevelSerializable = "isolation level serializable" TxReadOnly = "read only" TxReadWrite = "read write" ) // Format formats the node. func (node *SetExpr) Format(buf *TrackedBuffer) { // We don't have to backtick set variable names. if node.Name.EqualString("charset") || node.Name.EqualString("names") { buf.Myprintf("%s %v", node.Name.String(), node.Expr) } else if node.Name.EqualString(TransactionStr) { sqlVal := node.Expr.(*SQLVal) buf.Myprintf("%s %s", node.Name.String(), strings.ToLower(string(sqlVal.Val))) } else { buf.Myprintf("%s = %v", node.Name.String(), node.Expr) } } func (node *SetExpr) walkSubtree(visit Visit) error { if node == nil { return nil } return Walk( visit, node.Name, node.Expr, ) } // OnDup represents an ON DUPLICATE KEY clause. type OnDup UpdateExprs // Format formats the node. func (node OnDup) Format(buf *TrackedBuffer) { if node == nil { return } buf.Myprintf(" on duplicate key update %v", UpdateExprs(node)) } func (node OnDup) walkSubtree(visit Visit) error { return Walk(visit, UpdateExprs(node)) } // ColIdent is a case insensitive SQL identifier. It will be escaped with // backquotes if necessary. type ColIdent struct { // This artifact prevents this struct from being compared // with itself. It consumes no space as long as it's not the // last field in the struct. _ [0]struct{ _ []byte } val, lowered string } // NewColIdent makes a new ColIdent. func NewColIdent(str string) ColIdent { return ColIdent{ val: str, } } // Format formats the node. func (node ColIdent) Format(buf *TrackedBuffer) { formatID(buf, node.val, node.Lowered()) } func (node ColIdent) walkSubtree(visit Visit) error { return nil } // IsEmpty returns true if the name is empty. func (node ColIdent) IsEmpty() bool { return node.val == "" } // String returns the unescaped column name. It must // not be used for SQL generation. Use sqlparser.String // instead. The Stringer conformance is for usage // in templates. func (node ColIdent) String() string { return node.val } // CompliantName returns a compliant id name // that can be used for a bind var. func (node ColIdent) CompliantName() string { return compliantName(node.val) } // Lowered returns a lower-cased column name. // This function should generally be used only for optimizing // comparisons. func (node ColIdent) Lowered() string { if node.val == "" { return "" } if node.lowered == "" { node.lowered = strings.ToLower(node.val) } return node.lowered } // Equal performs a case-insensitive compare. func (node ColIdent) Equal(in ColIdent) bool { return node.Lowered() == in.Lowered() } // EqualString performs a case-insensitive compare with str. func (node ColIdent) EqualString(str string) bool { return node.Lowered() == strings.ToLower(str) } // MarshalJSON marshals into JSON. func (node ColIdent) MarshalJSON() ([]byte, error) { return json.Marshal(node.val) } // UnmarshalJSON unmarshals from JSON. func (node *ColIdent) UnmarshalJSON(b []byte) error { var result string err := json.Unmarshal(b, &result) if err != nil { return err } node.val = result return nil } // TableIdent is a case sensitive SQL identifier. It will be escaped with // backquotes if necessary. type TableIdent struct { v string } // NewTableIdent creates a new TableIdent. func NewTableIdent(str string) TableIdent { return TableIdent{v: str} } // Format formats the node. func (node TableIdent) Format(buf *TrackedBuffer) { formatID(buf, node.v, strings.ToLower(node.v)) } func (node TableIdent) walkSubtree(visit Visit) error { return nil } // IsEmpty returns true if TabIdent is empty. func (node TableIdent) IsEmpty() bool { return node.v == "" } // String returns the unescaped table name. It must // not be used for SQL generation. Use sqlparser.String // instead. The Stringer conformance is for usage // in templates. func (node TableIdent) String() string { return node.v } // CompliantName returns a compliant id name // that can be used for a bind var. func (node TableIdent) CompliantName() string { return compliantName(node.v) } // MarshalJSON marshals into JSON. func (node TableIdent) MarshalJSON() ([]byte, error) { return json.Marshal(node.v) } // UnmarshalJSON unmarshals from JSON. func (node *TableIdent) UnmarshalJSON(b []byte) error { var result string err := json.Unmarshal(b, &result) if err != nil { return err } node.v = result return nil } func formatID(buf *TrackedBuffer, original, lowered string) { isDbSystemVariable := false if len(original) > 1 && original[:2] == "@@" { isDbSystemVariable = true } for i, c := range original { if !isLetter(uint16(c)) && (!isDbSystemVariable || !isCarat(uint16(c))) { if i == 0 || !isDigit(uint16(c)) { goto mustEscape } } } if _, ok := keywords[lowered]; ok { goto mustEscape } buf.Myprintf("%s", original) return mustEscape: buf.WriteByte('`') for _, c := range original { buf.WriteRune(c) if c == '`' { buf.WriteByte('`') } } buf.WriteByte('`') } func compliantName(in string) string { var buf strings.Builder for i, c := range in { if !isLetter(uint16(c)) { if i == 0 || !isDigit(uint16(c)) { buf.WriteByte('_') continue } } buf.WriteRune(c) } return buf.String() }