N2_FIR5 (3)

R s FdEREZ -IENL

AEFIRSFEIMSITE, LABLIRSINGE (variance) , SEIFREMBERERIFAINZA, HNXMBE, BIITUBFRNHBRA, b
WRAIENME. 1EINEREES. R RIERMR. PREERELAESE, ENEERVSHSIENTL.

—. L2BEIEN
o XMIENES GRS SN EREL

1« , : ,
J = -— 2 (P 1og (™) + (1 = yD)log(1 — a1®)))
i=1
EXH
LS (6 ~ - . 12
Jregularized = - 2 (P 1og(a™P) + (1 - yP)log(1 - aH1@)) + ~ 2 Z Z ch[é]z 2)
=1 TR

Cross-entropy cost L2 regularization cost

EREHIRMN RIS 25> h W2 258#,, FRI9Frobenius norm FRLATERERY, $EFEWBRIWEIEZIW,I, AN RELINGE S RNFRA
L21TEM{¥cost, BRATERABIEIBSIES, W = W — learning, ate x dW IIAMIdWHER T REBIEMMCHANEKRT, EFEHWIEEN), R
FRL2SBEUENMY S9N ERER,

o BBANAENMCEESEILTIMETE? B EAILUXAINA, Wi\, [REEMZITRISImE), RIRERINW=0, BBANNAHRETHMIREAR
R, METRIBW), BASZIE, Bit, MRZABIUSHIER, SEIENEAILIHESZE, SRAWHANESEMER, XFE—1A
LAURIHRISEL.

—. L1EEIEN{E

o MENSL2ENWARZE, BIWEIBRIWIEAIW, L FRL1SEE, L1IERMEREF 510 T E3TE,

o L1FOL2—HE, EBESIANSEHWRIEST, &SRB EWRIRSRISEN, RinERHEEWPIIRE(EN0, FEMNSBAIRIERES.

« ISL2ARRIRE, L1gesr~EmEtt, LaBRT £ 800%E, MEMAHEER0, ML2SIEEESAHE, XEAHERSZRETO (¥4
EEFFANTT)

=. LOSBEIIENIE

« LOIEMME, LOSBELZRISMETIFORTTRAINMEL. MRFNALOSBERMU— M SEGEREWINE, MEFEWRABRDTRERZO. ML, LOE
NHEISEARIZE LRHEMBRIFRIARES], minllWollfE—EFZMT, KEEER1FN T min| W) | (ELOTEEULILZRINP-hardial@E, AfIF2MaTA
L1,L25BE,

Y. dropoutIEN{L

o XFIENEHREREREHRETHIIER, JTLEEFAMTNS T RELELFIZIRUHE, LIARIHEMSBRIAENIIMR. XMPCAERE
{1, PCARSIMINEEIRHITIHEIRE, MdropoutZ2XEEFIRAWHERT (REHL) &, MMRETEAHE, XEJLIFHEMEIFELESE
A HG.

F. Early stopping
« RAENEL, XHSRRTEREFINNFEIRLE, N— P PSFANREOREL, RN PFAR/NIW, BTLABSILTIE.
7. BUEHIR
o MRFIRETD, WREMEATRESETNG, BABIALFEMNENE, WAL REdESE, MTEGRBICIISE 8. #EF, T
HERAGE T, e, BEIEERE RIS,
FRER

AN FIERBENATGESIIALSayhisesk, ftFI8%, oJ{ERE,; (KBCIAUEZRH Courseral@fit, HLSayhiserl, FMEEFIAASaIEgithubshEif),
1B70AFCourserafil s,

https://github.com/LSayhi/Deeplearning (https://github.com/LSayhi/Deepl earning)

HMIEARE: AIFGET ai

Regularization

Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious
problem, if the training dataset is not big enough. Sure it does well on the training set, but the learned network doesn't generalize to new examples
that it has never seen!

You will learn to: Use regularization in your deep learning models.

Let's first import the packages you are going to use.

https://github.com/LSayhi/DeepLearning

In

In

[1]:

[2]:

Import packages

import numpy as np

import matplotlib. pyplot as plt

from reg utils import sigmoid, relu, plot decision_boundary, initialize parameters, load 2D dataset, predict dec

from reg utils import compute cost, predict, forward propagation, backward propagation, update parameters
import sklearn

import sklearn. datasets

import scipy. io

from testCases import *

%matplotlib inline

plt. rcParams[’ figure. figsize’] = (7.0, 4.0) # set default size of plots
plt. rcParams[’ image. interpolation’] = 'nearest’

plt. rcParams[’ image.cmap’] = ' gray’

C:\Users\BD\CHB/EMV\EE — 58— M fE{El \assignment1\reg utils. py:85: SyntaxWarning: assertion is always true, perhaps remove pare
ntheses?

assert (parameters[’W + str(l)].shape == layer dims[1], layer dims[1-1])
C:\Users\BD\ACHEAEMV\ZE — P58 — 4w FE/E Mk \assignment1\reg utils. py:86: SyntaxWarning: assertion is always true, perhaps remove pare

ntheses?
assert (parameters['W + str(l)].shape == layer dims[1], 1)

Problem Statement: You have just been hired as an Al expert by the French Football Corporation. They would like you to recommend positions where
France's goal keeper should kick the ball so that the French team's players can then hit it with their head.

French
goalkeeper

Figure 1 : Football field
The goal keeper kicks the ball in the air, the players of each team are fighting to hit the ball with their head

They give you the following 2D dataset from France's past 10 games.

train X, train Y, test X, test Y = load 2D dataset()

06 -
. : -.: ..i
L L
0.4 1 o o oo o %0’ 00 0
°ee® *, %8 ‘o0, ’
0.7 4 . '.." s X a®® e, 0 0,0
® e { 02e, ee -
i ™ e ** 3% . %*
o0 ® ey * I'.: '“i o * Il-!. %"
])] L)
-0.2 o ¢ e 3o .: '.': . .':.--"
.... ™ , [I * '. .. []
-0.4 el o o e * o .
. ..» ™ e ..‘ s @&
—0.6 - e * 2 L0 f
' . ® g o
06 0.4 0.2 0.0 02

Each dot corresponds to a position on the football field where a football player has hit the ball with his/her head after the French goal keeper has shot
the ball from the left side of the football field.

« If the dot is blue, it means the French player managed to hit the ball with his/her head
« If the dot is red, it means the other team's player hit the ball with their head

Your goal: Use a deep learning model to find the positions on the field where the goalkeeper should kick the ball.
Analysis of the dataset: This dataset is a little noisy, but it looks like a diagonal line separating the upper left half (blue) from the lower right half (red)
would work well.

You will first try a non-regularized model. Then you'll learn how to regularize it and decide which model you will choose to solve the French Football
Corporation's problem.

In

[3]:

1 - Non-regularized model

You will use the following neural network (already implemented for you below). This model can be used:

 in regularization mode -- by setting the lambd input to a non-zero value. We use "lambd" instead of "lambda" because "lambda" is a reserved

keyword in Python.
 in dropout mode -- by setting the keep_prob to a value less than one

You will first try the model without any regularization. Then, you will implement:

L2 regularization -- functions: "compute cost _with regularization()" and "backward propagation with regularization()"
» Dropout -- functions: "forward propagation with dropout ()" and "backward propagation with dropout ()"

In each part, you will run this model with the correct inputs so that it calls the functions you've implemented. Take a look at the code below to

familiarize yourself with the model.

def model (X, Y, learning rate = 0.3, num iterations = 30000, print cost = True, lambd = 0, keep prob = 1):

nnn

Implements a three—layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.

Arguments:

X — input data, of shape (input size, number of examples)

Y — true “label” vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples)
learning rate —— learning rate of the optimization

num_iterations —— number of iterations of the optimization loop

print_cost — If True, print the cost every 10000 iterations

lambd —— regularization hyperparameter, scalar

keep_prob — probability of keeping a neuron active during drop-out, scalar.

Returns:

parameters —— parameters learned by the model. They can then be used to predict
grads = {}

costs = [] # to keep track of the cost

m = X. shape[1] # number of examples

layers dims = [X.shapel[0], 20, 3, 1]

Initialize parameters dictionary.
parameters = initialize parameters(layers dims)

Loop (gradient descent)

for

i in range (0, num iterations):

Forward propagation: LINEAR —> RELU —> LINEAR —> RELU —> LINEAR —-> SIGMOID.
if keep prob == 1:

a3, cache = forward propagation (X, parameters)
elif keep prob < 1:

a3, cache = forward propagation with dropout (X, parameters, keep prob)

Cost function
if lambd == 0:
cost = compute cost(a3, Y)
else:
cost = compute cost with regularization(a3, Y, parameters, lambd)

Backward propagation.

assert (lambd==0 or keep prob==1) # It is possible to use both L2 regularization and dropout,
but this assignment will only explore one at a time

if lambd == 0 and keep prob == 1:

grads = backward propagation(X, Y, cache)
elif lambd != 0:

grads = backward propagation with regularization(X, Y, cache, lambd)
elif keep prob < 1:

grads = backward propagation with dropout (X, Y, cache, keep prob)

Update parameters.
parameters = update_parameters(parameters, grads, learning_rate)

Print the loss every 10000 iterations
if print cost and i % 10000 == O:

print ("Cost after iteration {}: {}”.format(i, cost))
if print cost and i % 1000 == 0:

costs. append (cost)

plot the cost

plt.
plt.
plt.
plt.
plt.

plot(costs)

ylabel C cost’)

xlabel C iterations (x1,000)")

title ("Learning rate =" + str(learning rate))
show ()

return parameters

Let's train the model without any regularization, and observe the accuracy on the train/test sets.

In

In

[4]:

[5]:

parameters = model (train X, train Y)

print (“On the training set:”)

predictions train = predict(train X, train Y, parameters)
print (“On the test set:”)

predictions test = predict(test X, test Y, parameters)

Cost after iteration 0: 0.6557412523481002
Cost after iteration 10000: 0.16329987525724202
Cost after iteration 20000: 0.1385164242324576

Learning rate =0.3

0.6 4

05 4
in 0.4 1
=]

03

0.2

01

o 5 10 15 20 25 30
iterations (x1,000)

On the training set:
Accuracy: 0.947867298578
On the test set:
Accuracy: 0.915

The train accuracy is 94.8% while the test accuracy is 91.5%. This is the baseline model (you will observe the impact of regularization on this model).

Run the following code to plot the decision boundary of your model.

plt. title ("Model without regularization”)

axes = plt.gca()

axes. set_x1im([-0. 75, 0. 40])

axes. set_ylim([-0. 75, 0. 65])

plot decision boundary(lambda x: predict dec (parameters, x.T), train X, train Y)

Model without regularization

06
0.4

02

-0.6 -0.4 —-0.2 0.0 0z 04
x1

The non-regularized model is obviously overfitting the training set. It is fitting the noisy points! Lets now look at two techniques to reduce overfitting.

2 - L2 Regularization

The standard way to avoid overfitting is called L2 regularization. It consists of appropriately modifying your cost function, from:

m
J= _% Y (47 10g (a9 + (1 - y?)log(1 - alt?))
i=1

To:
o1 i Dlog (D) + (1 — y log(1 — aHD)) + L2 e
regularized m & g 0g m 2 ; ; ;
N ~ 7o /
cross-entropy cost L2 regularization cost

Let's modify your cost and observe the consequences.

[1]2

Exercise: Implement compute cost with regularization() which computes the cost given by formula (2). To calculate Z Z WkJ- , use :

ko j
np. sum(np. square (W1))

1

Note that you have to do this for W, W2l and W3] then sum the three terms and multiply by %

(1)

2)

In

In

[6]:

[7]:

GRADED FUNCTION: compute cost with regularization

def compute cost with regularization(A3, Y, parameters, lambd):

nnn

Implement the cost function with L2 regularization. See formula (2) above

Arguments:

A3 —— post-activation, output of forward propagation, of shape (output size, number of examples)
Y — “true” labels vector, of shape (output size, number of examples)

parameters —— python dictionary containing parameters of the model

Returns:

cost — value of the regularized loss function (formula (2))

i

m = Y. shape[1]

W1 = parameters[”W1”]
W2 = parameters[”W2”]
W3 = parameters[”W3”]

”

cross_entropy cost = compute cost(A3, Y) # This gives you the cross—entropy part of the cost

#a# START CODE HERE #%2% (approx. 1 line)

L2 regularization cost = lambd/ (2%m)* (np. sum(np. square (parameters[”W1”]))+np. sum(np. square (parameters[”"W2”])) +np. sum(np. square (par
#u END CODER HERE ###

cost = cross_entropy_cost + L2 regularization cost

return cost

A3, Y assess, parameters = compute cost with regularization test case()

print (“cost = 7 + str(compute cost with regularization(A3, Y assess, parameters, lambd = 0.1)))

cost = 1.78648594516

Expected Output:

cost 1.78648594516

Of course, because you changed the cost, you have to change backward propagation as well! All the gradients have to be computed with respect to
this new cost.

Exercise: Implement the changes needed in backward propagation to take into account regularization. The changes only concern dW1, dW2 and

dWa3. For each, you have to add the regularization term's gradient (ﬁ(% %Wz) = %W).

In [8]: # GRADED FUNCTION: backward propagation with regularization

def backward propagation with regularization(X, Y, cache, lambd):

nnn

Implements the backward propagation of our baseline model to which we added an L2 regularization.

Arguments:

X — input dataset, of shape (input size, number of examples)

Y — “true” labels vector, of shape (output size, number of examples)
cache — cache output from forward propagation()

lambd —— regularization hyperparameter, scalar

Returns:
gradients — A dictionary with the gradients with respect to each parameter, activation and pre—activation variables

Y

m = X. shape[1]
(Z1, Al, W1, bl, 72, A2, W2, b2, Z3, A3, W3, b3) = cache

dZ3 = A3 - Y

#ue START CODE HERE ### (approx. 1 line)

dW3 = 1. /m * np. dot(dZ3, A2.T) + lambd/m*W3

744 END CODE HERE ##%

db3 = 1./m * np. sum(dZ3, axis=1, keepdims = True)

dA2 = np.dot (W3. T, dZ3)

dZ2 = np.multiply(dA2, np.int64(A2 > 0))

wrtt START CODE HERE ### (approx. 1 line)

dW2 = 1. /m * np. dot(dZ2, Al.T) + lambd/m*W2

#ax# END CODE HERE ###

db2 = 1./m * np. sum(dZ2, axis=1, keepdims = True)

dAl = np.dot (W2. T, dZ2)

dZ1 = np.multiply(dAl, np.int64(A1 > 0))

#d START CODE HERE ##%# (approx. 1 line)

dWl = 1./m * np.dot(dZ1, X.T) + lambd/m*W1

#u# END CODE HERE ###

dbl = 1./m * np. sum(dZl, axis=1, keepdims = True)

gradients = {"dZ3”: dZ3, “dW3”: dW3, “db3”: db3, “dA2”: dA2,
"dz2”: dz2, “dw2”: dw2, “db2”: db2, “dA1”: dAl,
”dz17: dz1, “dwl”: dwl, “dbl”: dbl}

return gradients

In [9]: X assess, Y assess, cache = backward propagation with regularization test case()

grads = backward propagation with regularization(X assess, Y assess, cache, lambd = 0.7)
print (“dWl = 7+ str(grads[”dW1”]))
print ("dW2 = "+ str(grads[”dw2”]))
print (“dW3 = "+ str(grads[”dW3”]))

dWl = [[-0. 25604646 0.12298827 -0.28297129]
[-0. 17706303 0. 34536094 —0.4410571]]

dw2 = [[0.79276486 0.85133918]
[-0. 0957219 -0.01720463]
[-0. 13100772 -0. 03750433]]

dw3 = [[-1.77691347 —0. 11832879 —0. 09397446]]

Expected Output:

dW1 [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571]]
dW2 [[0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]]
dw3 [[-1.77691347 -0.11832879 -0.09397446]]

Let's now run the model with L2 regularization (4 = 0.7). The model () function will call:

e compute cost with regularization instead of compute cost

e backward propagation with regularization instead of backward propagation

In [10]: parameters = model (train X, train Y, lambd = 0.7)
print (“On the train set:”)
predictions train = predict(train X, train Y, parameters)
print (“On the test set:”)
predictions test = predict(test X, test Y, parameters)

Cost after iteration 0: 0.6974484493131264
Cost after iteration 10000: 0.2684918873282239
Cost after iteration 20000: 0.2680916337127301

Learning rate =0.3

0.7 1

0.6 4

= 0.5 1

oS

04 4

0.3 A

0 5 10 15 20 25 0
iterations {x1,000)

On the train set:
Accuracy: 0. 938388625592
On the test set:
Accuracy: 0.93

Congrats, the test set accuracy increased to 93%. You have saved the French football team!

You are not overfitting the training data anymore. Let's plot the decision boundary.

In [11]: plt.title("Model with L2-regularization”)
axes = plt.gca()
axes. set_x1im([-0. 75, 0. 40])
axes. set_ylim([-0. 75, 0. 65])
plot decision boundary(lambda x: predict dec(parameters, x.T), train X, train Y)

Model with L2-regularization

06
0.4

02

-0.6 -0.4 -0.2 00 02 o4

Observations:

« The value of A is a hyperparameter that you can tune using a dev set.
L2 regularization makes your decision boundary smoother. If A is too large, it is also possible to "oversmooth", resulting in a model with high bias.

What is L2-regularization actually doing?:

L2-regularization relies on the assumption that a model with small weights is simpler than a model with large weights. Thus, by penalizing the square
values of the weights in the cost function you drive all the weights to smaller values. It becomes too costly for the cost to have large weights! This
leads to a smoother model in which the output changes more slowly as the input changes.

What you should remember -- the implications of L2-regularization on:

» The cost computation:

= A regularization term is added to the cost
» The backpropagation function:

= There are extra terms in the gradients with respect to weight matrices
« Weights end up smaller ("weight decay"):

= Weights are pushed to smaller values.

3 - Dropout

Finally, dropout is a widely used regularization technique that is specific to deep learning. It randomly shuts down some neurons in each iteration.
Watch these two videos to see what this means!

(l)

roep-prob=0e iteration: 1

(@)

(l)

0:00 / 0:08

Figure 2 : Drop-out on the second hidden layer.
At each iteration, you shut down (= set to zero) each neuron of a layer with probability 1 — keep_prob or keep it with probability keep_prob (50%
here). The dropped neurons don't contribute to the training in both the forward and backward propagations of the iteration.

On layer 1:
keep_prob = 0.6

On layer 3:
keep_prob = 0.8

: - prediction

RA

0:00 / 0:08

Figure 3 : Drop-out on the first and third hidden layers.
1 layer: we shut down on average 40% of the neurons. 3 layer: we shut down on average 20% of the neurons.

When you shut some neurons down, you actually modify your model. The idea behind drop-out is that at each iteration, you train a different model that
uses only a subset of your neurons. With dropout, your neurons thus become less sensitive to the activation of one other specific neuron, because that
other neuron might be shut down at any time.

3.1 - Forward propagation with dropout

Exercise: Implement the forward propagation with dropout. You are using a 3 layer neural network, and will add dropout to the first and second hidden
layers. We will not apply dropout to the input layer or output layer.

Instructions: You would like to shut down some neurons in the first and second layers. To do that, you are going to carry out 4 Steps:

1. In lecture, we dicussed creating a variable d" with the same shape as atll using np. random. rand () to randomly get numbers between 0 and 1.
Here, you will use a vectorized implementation, so create a random matrix pll = [dld[l](z). .. d[l](m)] of the same dimension as Al

2. Set each entry of D! to be 0 with probability (1-keep_prob) or 1 with probability (keep_prob), by thresholding values in DI1! appropriately. Hint: to
set all the entries of a matrix X to O (if entry is less than 0.5) or 1 (if entry is more than 0.5) you would do: X = (X < 0.5). Note that 0 and 1 are
respectively equivalent to False and True.

3. Set Alll to A1l % DI, (You are shutting down some neurons). You can think of DIl as a mask, so that when it is multiplied with another matrix, it
shuts down some of the values.

4. Divide Al'l by keep prob. By doing this you are assuring that the result of the cost will still have the same expected value as without drop-out.
(This technique is also called inverted dropout.)

In

In

[12]:

[13]:

GRADED FUNCTION: forward propagation with dropout

def forward propagation with dropout (X, parameters, keep prob = 0.5):

nnn

Implements the forward propagation: LINEAR —> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT —-> LINEAR -> SIGMOID.

Arguments:
X — input dataset, of shape (2, number of examples)
parameters —— python dictionary containing your parameters “W1”7, ”“bl”, “W2”, ”“b2”, “W3”, "b3”:

W1 — weight matrix of shape (20, 2)
bl — bias vector of shape (20, 1)
W2 — weight matrix of shape (3, 20)
b2 — bias vector of shape (3, 1)
W3 —— weight matrix of shape (1, 3)
b3 — bias vector of shape (1, 1)
keep prob — probability of keeping a neuron active during drop-out, scalar

Returns:
A3 — last activation value, output of the forward propagation, of shape (1,1)
cache —— tuple, information stored for computing the backward propagation

nnn

np. random. seed (1)

retrieve parameters
W1 = parameters[”W1”]
bl = parameters[”bl
W2 = parameters[”W
b2 = parameters[”b
W3 = parameters[”W
b3 = parameters[”b

"
27]
2”]
37]
37]

LINEAR —> RELU —> LINEAR —> KELU —> LINEAR —> SIGMOID
71 = np.dot (W1, X) + bl
Al = relu(Z1)

#pd START CODE HERE ##%# (approx. 4 lines) # Steps 1-4 below correspond to the Steps 1-4 described above.

D1 = np. random. rand (Al. shape[0], Al. shape[1]) # Step 1: initialize matrix DI = np. random. ra
D1 = (D1<keep prob) # Step 2: convert entries of DI to 0 or 1 (using keep prob as the thre
Al = Al1*D1 # Step 3: shut down some neurons of Al

Al = Al/keep prob # Step 4: scale the value of neurons that haven’t been shut down

#a7 END CODE HERE ##%

72 = np.dot (W2, Al) + b2

A2 = relu(Z2)

#u# START CODE HERE ##%# (approx. 4 lines)

D2 = np. random. rand (A2. shape[0], A2. shape[1]) # Step 1: initialize matrix D2 = np. random. rand(
D2 = (D2<keep prob) # Step 2: convert entries of D2 to 0 or 1 (using keep prob as the thres
A2 = A2%D2 # Step 3: shut down some neurons of A2

A2 = A2/keep prob 4% Step 4: scale the value of neurons that haven’t been shut down

#a# END CODE HERE ###

73 = np.dot (W3, A2) + b3

A3 = sigmoid(Z3)

cache = (Z1, D1, Al, W1, bl, 72, D2, A2, W2, b2, 73, A3, W3, b3)

return A3, cache

X assess, parameters = forward propagation with dropout test case()

A3, cache = forward propagation with dropout (X assess, parameters, keep prob = 0.7)
print ("A3 =7 + str(A3))

A3 = [[0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]]

Expected Output:

A3 [[0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]]

3.2 - Backward propagation with dropout

Exercise: Implement the backward propagation with dropout. As before, you are training a 3 layer network. Add dropout to the first and second hidden
layers, using the masks D! and D! stored in the cache.

Instruction: Backpropagation with dropout is actually quite easy. You will have to carry out 2 Steps:

1. You had previously shut down some neurons during forward propagation, by applying a mask DU to AL, In backpropagation, you will have to shut
down the same neurons, by reapplying the same mask D! to dAl.

2. During forward propagation, you had divided Al by keep_prob. In backpropagation, you'll therefore have to divide dA1 by keep_prob again (the
calculus interpretation is that if Al is scaled by keep_prob, then its derivative dAM is also scaled by the same keep_prob).

In [14]: # GRADED FUNCTION: backward propagation with dropout

def backward propagation with dropout (X, Y, cache, keep prob):

nnn

Implements the backward propagation of our baseline model to which we added dropout.

Arguments:

X — input dataset, of shape (2, number of examples)

Y — “true” labels vector, of shape (output size, number of examples)
cache —— cache output from forward propagation with dropout ()

keep_prob — probability of keeping a neuron active during drop-out, scalar

Returns:
gradients — A dictionary with the gradients with respect to each parameter, activation and pre—activation variables

nnn

m = X. shape[1]
(Z1, D1, Al, W1, bl, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

dZz3 = A3 - Y

dW3 = 1./m * np. dot (dZ3, A2.T)

db3 = 1. /m * np. sum(dZ3, axis=1, keepdims = True)

dA2 = np.dot (W3. T, dZ3)

#r START CODE HERE ### (=~ 2 lines of code)

dA2 = dA2%D2 # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation
dA2 = dA2/keep prob # Step 2: Scale the value of neurons that haven’t been shut down
w4 END CODE HERE ###

dZ2 = np.multiply(dA2, np.int64(A2 > 0))

dW2 = 1. /m * np.dot(dZ2, Al.T)

db2 = 1. /m * np. sum(dZ2, axis=1, keepdims = True)

dAl = np.dot (W2.T, dZ2)

#ue START CODE HERE ### (=~ 2 lines of code)

dAl = dA1*D1 # Step 1: Apply mask DI to shut down the same neurons as during the forward propagation
dAl = dAl/keep prob # Step 2: Scale the value of neurons that haven’t been shut down

#ant END CODE HERE ###

dZ1 = np.multiply(dAl, np.int64(A1 > 0))

dWl = 1./m * np.dot(dZ1, X.T)

dbl = 1./m * np. sum(dZl, axis=1, keepdims = True)

gradients = {"dZ3”: dZ3, “dW3”: dW3, “db3”: db3, "dA2”: dA2,
"dz2”: dz2, “dw2”: dw2, “db2”: db2, “dA1”: dAl,
”dz17: dz1, “dwl”: dwl, “dbl”: dbl}

return gradients

In [15]: X assess, Y assess, cache = backward propagation with dropout test case()
gradients = backward propagation with dropout (X assess, Y assess, cache, keep prob = 0.8)

print (“dAl = 7 + str(gradients[”dA1”]))
print ("dA2 = 7 + str(gradients[”dA27]))

dAl = [[0.36544439 0. -0. 00188233 0. -0. 17408748]
[0.65515713 0. -0. 00337459 0. -0. 1]
dA2 = [[0.58180856 0. -0. 00299679 0. -0. 27715731]
[0. 0. 53159854 0. 0. 53159854 —0. 34089673]
[0. 0. -0. 00292733 0. -0. 1]

Expected Output:

dA1 [[0.36544439 0. -0.00188233 0. -0.17408748] [0.65515713 0. -0.00337459 0. -0.]]
dA2 [[0.58180856 0.-0.00299679 0. -0.27715731] [0. 0.53159854 -0. 0.53159854 -0.34089673] [0. 0. -0.00292733 0. -0.]]

Let's now run the model with dropout (keep_prob = 0. 86). It means at every iteration you shut down each neurons of layer 1 and 2 with 24%
probability. The function model () will now call:

e forward propagation with dropout instead of forward propagation.
e backward propagation with dropout instead of backward propagation.

In [16]: parameters = model (train X, train Y, keep prob = 0.86, learning rate = 0.3)

print (“On the train set:”)

predictions train = predict(train X, train Y, parameters)
print (“On the test set:”)

predictions test = predict(test X, test Y, parameters)

Cost after iteration 0: 0.6543912405149825

C:\Users\BD\AHEAEMV\ZE — P58 — I 4mFE/E Mk \assignment1\reg utils. py:236: RuntimeWarning: divide by zero encountered in log
logprobs = np.multiply(-np. log(a3),Y) + np.multiply(-np.log(l - a3), 1 - Y)

C:\Users\BD\ACHEAEMP\ZE — P58 — A 4 FE/E Mk \assignment1\reg utils. py:236: RuntimeWarning: invalid value encountered in multiply
logprobs = np.multiply (-np. log(a3),Y) + np.multiply(-np.log(l — a3), 1 - Y)

Cost after iteration 10000: 0.0610169865749056
Cost after iteration 20000: 0.060582435798513114

Learning rate =0.3

0.6 1

05 4

04 4

oost

03 A

0.2

01 A

0 5 10 15 20 5 0
iterations {x1,000)

On the train set:
Accuracy: 0.928909952607
On the test set:
Accuracy: 0.95

Dropout works great! The test accuracy has increased again (to 95%)! Your model is not overfitting the training set and does a great job on the test
set. The French football team will be forever grateful to you!

Run the code below to plot the decision boundary.

In [17]: plt.title("Model with dropout”)
axes = plt.gca()
axes. set_x1im([-0. 75, 0. 40])
axes. set_ylim([-0. 75, 0. 65])
plot decision boundary(lambda x: predict dec(parameters, x.T), train X, train Y)

Model with dropout

-0.6 -0.4 —0.2 0.0 02 04

Note:

« A common mistake when using dropout is to use it both in training and testing. You should use dropout (randomly eliminate nodes) only in
training.

» Deep learning frameworks like tensorflow (https://www.tensorflow.org/api_docs/python/tf/nn/dropout), PaddlePaddle
(http://doc.paddlepaddle.org/release_doc/0.9.0/doc/ui/api/trainer_config_helpers/attrs.html), keras (https://keras.io/layers/core/#dropout) or caffe
(http://caffe.berkeleyvision.org/tutorial/layers/dropout.html) come with a dropout layer implementation. Don't stress - you will soon learn some of
these frameworks.

What you should remember about dropout:

« Dropout is a regularization technique.

* You only use dropout during training. Don't use dropout (randomly eliminate nodes) during test time.

» Apply dropout both during forward and backward propagation.

» During training time, divide each dropout layer by keep_prob to keep the same expected value for the activations. For example, if keep_prob is
0.5, then we will on average shut down half the nodes, so the output will be scaled by 0.5 since only the remaining half are contributing to the
solution. Dividing by 0.5 is equivalent to multiplying by 2. Hence, the output now has the same expected value. You can check that this works
even when keep_prob is other values than 0.5.

https://www.tensorflow.org/api_docs/python/tf/nn/dropout
http://doc.paddlepaddle.org/release_doc/0.9.0/doc/ui/api/trainer_config_helpers/attrs.html
https://keras.io/layers/core/#dropout
http://caffe.berkeleyvision.org/tutorial/layers/dropout.html

4 - Conclusions

Here are the results of our three models:

model train accuracy test accuracy

3-layer NN without regularization 95% 91.5%
3-layer NN with L2-regularization 94% 93%
3-layer NN with dropout 93% 95%

Note that regularization hurts training set performance! This is because it limits the ability of the network to overfit to the training set. But since it
ultimately gives better test accuracy, it is helping your system.

Congratulations for finishing this assignment! And also for revolutionizing French football. :-)

What we want you to remember from this notebook:

» Regularization will help you reduce overfitting.
» Regularization will drive your weights to lower values.
» L2 regularization and Dropout are two very effective regularization techniques.

