
机器学习系列（3）

提高深度学习性能之 --正则化
深度学习可能会存在过拟合问题，也即有比较高的方差（variance），导致深度网络不能很好的泛化，针对这个问题，我们可以有不同的解决方式，比
如采用正则化、增加数据集、减小网络规模、改变网络架构等，这个主题我们将讨论正则化。

一、L2范数正则化

这种正则化方式是将原交叉信息熵代价函数

更改为

更改后的代价函数的第二部分中 是范数，称为Frobenius norm,所以在书写时，矩阵 写为 或 ，在代价函数增加的第二部分代价称为
正则化cost。那么在反相传播过程中， ,此处的 相较于没有正则化的方式更大了，更新后的 将更小，因此我们也

称 范数正则化为权重减轻。

那么为什么正则化能够防止过拟合呢？直觉上可以这么认为，W越小，隐藏层神经元的影响越小，极端情况比如W=0，那么对应的神经元就没有发
挥作用，神经元的数目越小，越不容易拟合，因此，如果之前是过拟合的情况，经过正则化可以降低方差，当然W的大小还与 有关，这就是一个可
以调试的参数。

二、L1范数正则化

L1正则化与L2正则化不同的是，将 改为 ,记为 ,称L1范数，L1正则化是将平方换成了绝对值。
L1和L2一样，都是引入对参数W的惩罚，“惩罚”意为降低W对网络的影响，极端情况就是使W中的某些值为0，降低网络的表达能力。
L1与L2不同的是，L1能够产生稀疏性，L1会趋向于产生少量的特征，而其他的特征都是0，而L2会选择更多的特征，这些特征都会接近于0（详细
演绎待补充）

三、L0范数正则化

L0正则化， L0范数是指向量中非0的元素的个数。如果我们用L0范数来规则化一个参数矩阵W的话，就是希望W的大部分元素都是0。由此，L0正
则化将更大程度上降低网络的表达能力， 在一定条件下，依概率1等价于 ,但L0范数优化是个NP-hard问题，人们于是倾向于用
L1,L2范数。

四、dropout正则化

这种正则化方式是将隐藏层的神经元随机消除，可以理解为随机抛弃了某些已经学习到的特征，以达到降低网络表达能力的效果。这和PCA有点类
似，PCA是对输入层数据进行特征选择，而dropout是对隐藏层学习到的特征进行（随机）选择，不依赖于某一特征，这样可以降低网络对某些参数
的过拟合。

五、Early stopping

提前停止，这种方式是通过迭代次数和代价两者的曲线，取一个中等大小的迭代次数，此时对应中等大小的W，可以防止过拟合。

六、数据扩增

如果数据量过少，则深度血虚可能会产生过拟合，那么通过人工产生新的数据，则可以扩大数据集，对于图像识别比如将图片翻转、裁剪等，对于
数字识别将数字扭曲，旋转等，通过增加数据量减少过拟合。

申明
本文原理解释和公式推导均由LSayhi完成，供学习参考，可传播；代码实现的框架由Coursera提供，由LSayhi完成，详细数据和代码可在github中查询,
请勿用于Coursera刷分。

https://github.com/LSayhi/DeepLearning (https://github.com/LSayhi/DeepLearning)
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Regularization
Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious
problem, if the training dataset is not big enough. Sure it does well on the training set, but the learned network doesn't generalize to new examples
that it has never seen!

You will learn to: Use regularization in your deep learning models.

Let's first import the packages you are going to use.

https://github.com/LSayhi/DeepLearning


In [1]:

Problem Statement: You have just been hired as an AI expert by the French Football Corporation. They would like you to recommend positions where
France's goal keeper should kick the ball so that the French team's players can then hit it with their head.

Figure 1 : Football field 
The goal keeper kicks the ball in the air, the players of each team are fighting to hit the ball with their head

They give you the following 2D dataset from France's past 10 games.

In [2]:

Each dot corresponds to a position on the football field where a football player has hit the ball with his/her head after the French goal keeper has shot
the ball from the left side of the football field.

If the dot is blue, it means the French player managed to hit the ball with his/her head
If the dot is red, it means the other team's player hit the ball with their head

Your goal: Use a deep learning model to find the positions on the field where the goalkeeper should kick the ball.

Analysis of the dataset: This dataset is a little noisy, but it looks like a diagonal line separating the upper left half (blue) from the lower right half (red)
would work well.

You will first try a non-regularized model. Then you'll learn how to regularize it and decide which model you will choose to solve the French Football
Corporation's problem.

C:\Users\BD\代码作业\第二课第一周编程作业\assignment1\reg_utils.py:85: SyntaxWarning: assertion is always true, perhaps remove pare
ntheses? 
  assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1]) 
C:\Users\BD\代码作业\第二课第一周编程作业\assignment1\reg_utils.py:86: SyntaxWarning: assertion is always true, perhaps remove pare
ntheses? 
  assert(parameters['W' + str(l)].shape == layer_dims[l], 1) 

# import packages

import numpy as np
import matplotlib.pyplot as plt
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *
 
%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = load_2D_dataset()



1 - Non-regularized model
You will use the following neural network (already implemented for you below). This model can be used:

in regularization mode -- by setting the lambd input to a non-zero value. We use "lambd" instead of "lambda" because "lambda" is a reserved
keyword in Python.
in dropout mode -- by setting the keep_prob to a value less than one

You will first try the model without any regularization. Then, you will implement:

L2 regularization -- functions: "compute_cost_with_regularization()" and "backward_propagation_with_regularization()"
Dropout -- functions: "forward_propagation_with_dropout()" and "backward_propagation_with_dropout()"

In each part, you will run this model with the correct inputs so that it calls the functions you've implemented. Take a look at the code below to
familiarize yourself with the model.

In [3]:

Let's train the model without any regularization, and observe the accuracy on the train/test sets.

def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1):
    """
    Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.
    
    Arguments:
    X -- input data, of shape (input size, number of examples)
    Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples)
    learning_rate -- learning rate of the optimization
    num_iterations -- number of iterations of the optimization loop
    print_cost -- If True, print the cost every 10000 iterations
    lambd -- regularization hyperparameter, scalar
    keep_prob - probability of keeping a neuron active during drop-out, scalar.
    
    Returns:
    parameters -- parameters learned by the model. They can then be used to predict.
    """
        
    grads = {}
    costs = []                            # to keep track of the cost
    m = X.shape[1]                        # number of examples
    layers_dims = [X.shape[0], 20, 3, 1]
    
    # Initialize parameters dictionary.
    parameters = initialize_parameters(layers_dims)
 
    # Loop (gradient descent)
 
    for i in range(0, num_iterations):
 
        # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.
        if keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        
        # Cost function
        if lambd == 0:
            cost = compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)
            
        # Backward propagation.
        assert(lambd==0 or keep_prob==1)    # it is possible to use both L2 regularization and dropout, 
                                            # but this assignment will only explore one at a time
        if lambd == 0 and keep_prob == 1:
            grads = backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)
        
        # Update parameters.
        parameters = update_parameters(parameters, grads, learning_rate)
        
        # Print the loss every 10000 iterations
        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 1000 == 0:
            costs.append(cost)
    
    # plot the cost
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()
    
    return parameters



In [4]:

The train accuracy is 94.8% while the test accuracy is 91.5%. This is the baseline model (you will observe the impact of regularization on this model).
Run the following code to plot the decision boundary of your model.

In [5]:

The non-regularized model is obviously overfitting the training set. It is fitting the noisy points! Lets now look at two techniques to reduce overfitting.

2 - L2 Regularization
The standard way to avoid overfitting is called L2 regularization. It consists of appropriately modifying your cost function, from:

To:

Let's modify your cost and observe the consequences.

Exercise: Implement compute_cost_with_regularization() which computes the cost given by formula (2). To calculate  , use :

np.sum(np.square(Wl)) 

Note that you have to do this for ,  and , then sum the three terms and multiply by .
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Cost after iteration 0: 0.6557412523481002 
Cost after iteration 10000: 0.16329987525724202 
Cost after iteration 20000: 0.1385164242324576 

On the training set: 
Accuracy: 0.947867298578 
On the test set: 
Accuracy: 0.915 

parameters = model(train_X, train_Y)
print ("On the training set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)

plt.title("Model without regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)



In [6]:

In [7]:

Expected Output:

cost 1.78648594516

Of course, because you changed the cost, you have to change backward propagation as well! All the gradients have to be computed with respect to
this new cost.

Exercise: Implement the changes needed in backward propagation to take into account regularization. The changes only concern dW1, dW2 and
dW3. For each, you have to add the regularization term's gradient ( ).( ) = Wd

dW

1

2

λ
m
W 2 λ

m

cost = 1.78648594516 

# GRADED FUNCTION: compute_cost_with_regularization

 
def compute_cost_with_regularization(A3, Y, parameters, lambd):
    """
    Implement the cost function with L2 regularization. See formula (2) above.
    
    Arguments:
    A3 -- post-activation, output of forward propagation, of shape (output size, number of examples)
    Y -- "true" labels vector, of shape (output size, number of examples)
    parameters -- python dictionary containing parameters of the model
    
    Returns:
    cost - value of the regularized loss function (formula (2))
    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]
    
    cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost
    
    ### START CODE HERE ### (approx. 1 line)
    L2_regularization_cost = lambd/(2*m)*(np.sum(np.square(parameters["W1"]))+np.sum(np.square(parameters["W2"]))+np.sum(np.square(par
    ### END CODER HERE ###
    
    cost = cross_entropy_cost + L2_regularization_cost
    
    return cost

A3, Y_assess, parameters = compute_cost_with_regularization_test_case()
 
print("cost = " + str(compute_cost_with_regularization(A3, Y_assess, parameters, lambd = 0.1)))



In [8]:

In [9]:

Expected Output:

dW1 [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571 ]]

dW2 [[ 0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]]

dW3 [[-1.77691347 -0.11832879 -0.09397446]]

Let's now run the model with L2 regularization . The model() function will call:

compute_cost_with_regularization instead of compute_cost
backward_propagation_with_regularization instead of backward_propagation

(λ = 0.7)

dW1 = [[-0.25604646  0.12298827 -0.28297129] 
 [-0.17706303  0.34536094 -0.4410571 ]] 
dW2 = [[ 0.79276486  0.85133918] 
 [-0.0957219  -0.01720463] 
 [-0.13100772 -0.03750433]] 
dW3 = [[-1.77691347 -0.11832879 -0.09397446]] 

# GRADED FUNCTION: backward_propagation_with_regularization

 
def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    Implements the backward propagation of our baseline model to which we added an L2 regularization.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- "true" labels vector, of shape (output size, number of examples)
    cache -- cache output from forward_propagation()
    lambd -- regularization hyperparameter, scalar
    
    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    
    ### START CODE HERE ### (approx. 1 line)
    dW3 = 1./m * np.dot(dZ3, A2.T) + lambd/m*W3
    ### END CODE HERE ###
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    
    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    ### START CODE HERE ### (approx. 1 line)
    dW2 = 1./m * np.dot(dZ2, A1.T) + lambd/m*W2
    ### END CODE HERE ###
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    ### START CODE HERE ### (approx. 1 line)
    dW1 = 1./m * np.dot(dZ1, X.T) + lambd/m*W1
    ### END CODE HERE ###
    db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients

X_assess, Y_assess, cache = backward_propagation_with_regularization_test_case()
 
grads = backward_propagation_with_regularization(X_assess, Y_assess, cache, lambd = 0.7)
print ("dW1 = "+ str(grads["dW1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("dW3 = "+ str(grads["dW3"]))



In [10]:

Congrats, the test set accuracy increased to 93%. You have saved the French football team!

You are not overfitting the training data anymore. Let's plot the decision boundary.

In [11]:

Observations:

The value of  is a hyperparameter that you can tune using a dev set.
L2 regularization makes your decision boundary smoother. If  is too large, it is also possible to "oversmooth", resulting in a model with high bias.

What is L2-regularization actually doing?:

L2-regularization relies on the assumption that a model with small weights is simpler than a model with large weights. Thus, by penalizing the square
values of the weights in the cost function you drive all the weights to smaller values. It becomes too costly for the cost to have large weights! This
leads to a smoother model in which the output changes more slowly as the input changes.

What you should remember -- the implications of L2-regularization on:

The cost computation:
A regularization term is added to the cost

The backpropagation function:
There are extra terms in the gradients with respect to weight matrices

Weights end up smaller ("weight decay"):
Weights are pushed to smaller values.

λ

λ

3 - Dropout

Cost after iteration 0: 0.6974484493131264 
Cost after iteration 10000: 0.2684918873282239 
Cost after iteration 20000: 0.2680916337127301 

On the train set: 
Accuracy: 0.938388625592 
On the test set: 
Accuracy: 0.93 

parameters = model(train_X, train_Y, lambd = 0.7)
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)

plt.title("Model with L2-regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)



Finally, dropout is a widely used regularization technique that is specific to deep learning. It randomly shuts down some neurons in each iteration.
Watch these two videos to see what this means!

 
Figure 2 : Drop-out on the second hidden layer.  

At each iteration, you shut down (= set to zero) each neuron of a layer with probability  or keep it with probability  (50%
here). The dropped neurons don't contribute to the training in both the forward and backward propagations of the iteration.

Figure 3 : Drop-out on the first and third hidden layers.  
 layer: we shut down on average 40% of the neurons.  layer: we shut down on average 20% of the neurons.

When you shut some neurons down, you actually modify your model. The idea behind drop-out is that at each iteration, you train a different model that
uses only a subset of your neurons. With dropout, your neurons thus become less sensitive to the activation of one other specific neuron, because that
other neuron might be shut down at any time.

3.1 - Forward propagation with dropout
Exercise: Implement the forward propagation with dropout. You are using a 3 layer neural network, and will add dropout to the first and second hidden
layers. We will not apply dropout to the input layer or output layer.

Instructions: You would like to shut down some neurons in the first and second layers. To do that, you are going to carry out 4 Steps:

1. In lecture, we dicussed creating a variable  with the same shape as  using np.random.rand() to randomly get numbers between 0 and 1.
Here, you will use a vectorized implementation, so create a random matrix  of the same dimension as .

2. Set each entry of  to be 0 with probability (1-keep_prob) or 1 with probability (keep_prob), by thresholding values in  appropriately. Hint: to
set all the entries of a matrix X to 0 (if entry is less than 0.5) or 1 (if entry is more than 0.5) you would do: X = (X < 0.5). Note that 0 and 1 are
respectively equivalent to False and True.

3. Set  to . (You are shutting down some neurons). You can think of  as a mask, so that when it is multiplied with another matrix, it
shuts down some of the values.

4. Divide  by keep_prob. By doing this you are assuring that the result of the cost will still have the same expected value as without drop-out.
(This technique is also called inverted dropout.)

0:00 / 0:08

1 − keep_prob keep_prob

0:00 / 0:08

1st 3rd

d [1] a[1]

= [ . . . ]D[1] d [1](1)d [1](2) d [1](m) A[1]

D[1] D[1]

A[1]
∗A[1] D[1] D[1]

A[1]



In [12]:

In [13]:

Expected Output:

A3 [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]]

3.2 - Backward propagation with dropout
Exercise: Implement the backward propagation with dropout. As before, you are training a 3 layer network. Add dropout to the first and second hidden
layers, using the masks  and  stored in the cache.

Instruction: Backpropagation with dropout is actually quite easy. You will have to carry out 2 Steps:

1. You had previously shut down some neurons during forward propagation, by applying a mask  to A1. In backpropagation, you will have to shut
down the same neurons, by reapplying the same mask  to dA1.

2. During forward propagation, you had divided A1 by keep_prob. In backpropagation, you'll therefore have to divide dA1 by keep_prob again (the
calculus interpretation is that if  is scaled by keep_prob, then its derivative  is also scaled by the same keep_prob).

D[1] D[2]

D[1]

D[1]

A[1] dA[1]

A3 = [[ 0.36974721  0.00305176  0.04565099  0.49683389  0.36974721]] 

# GRADED FUNCTION: forward_propagation_with_dropout

 
def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):
    """
    Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.
    
    Arguments:
    X -- input dataset, of shape (2, number of examples)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (20, 2)
                    b1 -- bias vector of shape (20, 1)
                    W2 -- weight matrix of shape (3, 20)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)
    keep_prob - probability of keeping a neuron active during drop-out, scalar
    
    Returns:
    A3 -- last activation value, output of the forward propagation, of shape (1,1)
    cache -- tuple, information stored for computing the backward propagation
    """
    
    np.random.seed(1)
    
    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    ### START CODE HERE ### (approx. 4 lines)         # Steps 1-4 below correspond to the Steps 1-4 described above. 
    D1 = np.random.rand(A1.shape[0],A1.shape[1])                                         # Step 1: initialize matrix D1 = np.random.ra
    D1 = (D1<keep_prob)                                         # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the thre
    A1 = A1*D1                                         # Step 3: shut down some neurons of A1
    A1 = A1/keep_prob                                         # Step 4: scale the value of neurons that haven't been shut down
    ### END CODE HERE ###
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    ### START CODE HERE ### (approx. 4 lines)
    D2 = np.random.rand(A2.shape[0],A2.shape[1])                                      # Step 1: initialize matrix D2 = np.random.rand(
    D2 = (D2<keep_prob)                                        # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the thres
    A2 = A2*D2                                          # Step 3: shut down some neurons of A2
    A2 = A2/keep_prob                                        # Step 4: scale the value of neurons that haven't been shut down
    ### END CODE HERE ###
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)
    
    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)
    
    return A3, cache

X_assess, parameters = forward_propagation_with_dropout_test_case()
 
A3, cache = forward_propagation_with_dropout(X_assess, parameters, keep_prob = 0.7)
print ("A3 = " + str(A3))
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Expected Output:

dA1 [[ 0.36544439 0. -0.00188233 0. -0.17408748] [ 0.65515713 0. -0.00337459 0. -0. ]]

dA2 [[ 0.58180856 0. -0.00299679 0. -0.27715731] [ 0. 0.53159854 -0. 0.53159854 -0.34089673] [ 0. 0. -0.00292733 0. -0. ]]

Let's now run the model with dropout (keep_prob = 0.86). It means at every iteration you shut down each neurons of layer 1 and 2 with 24%
probability. The function model() will now call:

forward_propagation_with_dropout instead of forward_propagation.
backward_propagation_with_dropout instead of backward_propagation.

dA1 = [[ 0.36544439  0.         -0.00188233  0.         -0.17408748] 
 [ 0.65515713  0.         -0.00337459  0.         -0.        ]] 
dA2 = [[ 0.58180856  0.         -0.00299679  0.         -0.27715731] 
 [ 0.          0.53159854 -0.          0.53159854 -0.34089673] 
 [ 0.          0.         -0.00292733  0.         -0.        ]] 

# GRADED FUNCTION: backward_propagation_with_dropout

 
def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    """
    Implements the backward propagation of our baseline model to which we added dropout.
    
    Arguments:
    X -- input dataset, of shape (2, number of examples)
    Y -- "true" labels vector, of shape (output size, number of examples)
    cache -- cache output from forward_propagation_with_dropout()
    keep_prob - probability of keeping a neuron active during drop-out, scalar
    
    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = 1./m * np.dot(dZ3, A2.T)
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    dA2 = np.dot(W3.T, dZ3)
    ### START CODE HERE ### (≈ 2 lines of code)

    dA2 = dA2*D2              # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation
    dA2 = dA2/keep_prob              # Step 2: Scale the value of neurons that haven't been shut down
    ### END CODE HERE ###
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./m * np.dot(dZ2, A1.T)
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    ### START CODE HERE ### (≈ 2 lines of code)

    dA1 = dA1*D1              # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation
    dA1 = dA1/keep_prob              # Step 2: Scale the value of neurons that haven't been shut down
    ### END CODE HERE ###
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1./m * np.dot(dZ1, X.T)
    db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients

X_assess, Y_assess, cache = backward_propagation_with_dropout_test_case()
 
gradients = backward_propagation_with_dropout(X_assess, Y_assess, cache, keep_prob = 0.8)
 
print ("dA1 = " + str(gradients["dA1"]))
print ("dA2 = " + str(gradients["dA2"]))
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Dropout works great! The test accuracy has increased again (to 95%)! Your model is not overfitting the training set and does a great job on the test
set. The French football team will be forever grateful to you!

Run the code below to plot the decision boundary.

In [17]:

Note:

A common mistake when using dropout is to use it both in training and testing. You should use dropout (randomly eliminate nodes) only in
training.
Deep learning frameworks like tensorflow (https://www.tensorflow.org/api_docs/python/tf/nn/dropout), PaddlePaddle
(http://doc.paddlepaddle.org/release_doc/0.9.0/doc/ui/api/trainer_config_helpers/attrs.html), keras (https://keras.io/layers/core/#dropout) or caffe
(http://caffe.berkeleyvision.org/tutorial/layers/dropout.html) come with a dropout layer implementation. Don't stress - you will soon learn some of
these frameworks.

What you should remember about dropout:

Dropout is a regularization technique.
You only use dropout during training. Don't use dropout (randomly eliminate nodes) during test time.
Apply dropout both during forward and backward propagation.
During training time, divide each dropout layer by keep_prob to keep the same expected value for the activations. For example, if keep_prob is
0.5, then we will on average shut down half the nodes, so the output will be scaled by 0.5 since only the remaining half are contributing to the
solution. Dividing by 0.5 is equivalent to multiplying by 2. Hence, the output now has the same expected value. You can check that this works
even when keep_prob is other values than 0.5.

Cost after iteration 0: 0.6543912405149825 

C:\Users\BD\代码作业\第二课第一周编程作业\assignment1\reg_utils.py:236: RuntimeWarning: divide by zero encountered in log 
  logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) 
C:\Users\BD\代码作业\第二课第一周编程作业\assignment1\reg_utils.py:236: RuntimeWarning: invalid value encountered in multiply 
  logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y) 

Cost after iteration 10000: 0.0610169865749056 
Cost after iteration 20000: 0.060582435798513114 

On the train set: 
Accuracy: 0.928909952607 
On the test set: 
Accuracy: 0.95 

parameters = model(train_X, train_Y, keep_prob = 0.86, learning_rate = 0.3)
 
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)

plt.title("Model with dropout")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

https://www.tensorflow.org/api_docs/python/tf/nn/dropout
http://doc.paddlepaddle.org/release_doc/0.9.0/doc/ui/api/trainer_config_helpers/attrs.html
https://keras.io/layers/core/#dropout
http://caffe.berkeleyvision.org/tutorial/layers/dropout.html


4 - Conclusions

Here are the results of our three models:

model train accuracy test accuracy

3-layer NN without regularization 95% 91.5%

3-layer NN with L2-regularization 94% 93%

3-layer NN with dropout 93% 95%

Note that regularization hurts training set performance! This is because it limits the ability of the network to overfit to the training set. But since it
ultimately gives better test accuracy, it is helping your system.

Congratulations for finishing this assignment! And also for revolutionizing French football. :-)

What we want you to remember from this notebook:

Regularization will help you reduce overfitting.
Regularization will drive your weights to lower values.
L2 regularization and Dropout are two very effective regularization techniques.


