N_FIRT (5)

SIAMERMLECNNZ --[FIE Kz PythonSEH
BRSO ERRE:

o HEHRRE
ALl

Padding

BIRLEK
BERE

=

B RLE
o JITAIEECNN

PythonSCIi:
- INERS
ERER

RN REFRENR ATHESERD 9B Sayhisehk, MEISE, e, (Bl AIESRE Courseral@fit, HLSayhisenk, FAAEUERICIEEITE
github® (%), https://github.com/L Sayhi/Neural-network-and-Deep-learning (https://github.com/L Sayhi/Neural-network-and-Deep-learning)

—. SIRHERLZ(CNN)FIRIEFILSIE
1R :

o HENIRE—TJARNAENSRZSEFER, I =REENEGES RGN, ENAZ, AR, BafESi. Xigkies,
ERRFFCRIRINTAZST, HIEGREREMNEBNATRAE, SANE T METEER, BRIIGD SRR, NREIIBNESIREE
M2 (CNN) IXFRA THIMESEA 2N AT ENNREE, FEUS 7 RIFIIRER.

2.3 BEAE:

o EARYIZERTRBPEEICH, FIURE T NARESIERIIGEMNEZHTOR, SEGEERILREN, BBEHAFEARIFME., Z55EE, 0
FigurelFi7R, BEFANA1000 « 1000 3, HE—EREEHETMC1000, BBAWNMEEBE1000 « 3M = 3012, SHIREHELLAR
£, REBEEINEG, MEEANSHNE, BESBNRFNERSEILA, HEFAGLKANBPAXHMERZ0 (n?) KN, XEAFEETK
MR E, SREZNSBEEREE, KON TREZINTEE, MEEMRLRNERL,

!
el

Lj,tﬂ (oo, Tm)

Figure 1 : ML;;‘Eimﬂgﬁé‘SE%

o DGHENREREREMBZH—MES, SRFRZENEERPYARINSER (FJLUASRR—FNEK) | HiNEa RIERE A EH TS
K. PlNFigure2fiR, BSENETHMAGMNEE (ks B, Bkernel) , SRENHTERNERLSAIKFIL%, XMEDNEE
WRIEERRG], BRABGHNZMAERR N 2ATSEIAY, FEMPIFHER, WFigurel BRREIFPEREMARIRMIES, R2BE, BAZE
— M EERNRE (figure 37R) &, TiRHRAFE R (figure 3AENLH T RKEF (figure 372) RIBBIERZFIAL, FSL LT IE=RFAHERTIXR
NN A LSS A USRS,

vertical edges

0 A A2

‘e

horizontal edges
Figure 2 : JBER4FIE

https://github.com/LSayhi/Neural-network-and-Deep-learning

Vertical edge detection

|10{10]10] 0 |0} 0 ;
223 D
|10[1d[10{ 0|0 0 A 10 [30[30] 0
[10/10}10] 0 | 0/ s
|10/20)1010 |04 0| _ Fiofal = L°U30[30]0
10{10[10{0 [0 0 = e 03030/ 0
10{10{10{ 0|0 |0 s 0 (30{30| 0
10[10[10/ 0/ 0| 0 X s
1:1.1':._ L}
m - W 0
- e o i i =" Andrew Ng

Figure 3 : £ E
o BAXMNMTIERERERAR? HLFME SIRZE" (HF LENNETHEEARARE, EHFEXPEREEENNTRERZA, 28—

Kernelft/z A, FECNNFE(IFHITRME, REEEAFMXIOFIFERMEN, XTIHR, I8N ATRER (WSEFEIPFHEFE (1) -BRE
8Y) , LIBFigure3iilBXESIR'HNE XN, BHDLE— 1 ERIGERERE, FE2TEss, GREMelEiNisE R, mhE=MREimc
A9, £ EzE8E, MNEALENAENEmEM L, BHXRTIE, XENGTUSIEREERIITERRINKIN, AEBsKerne BIXKD, &G
BEFTAURERE. FRLARESDERS, AIBCRRIEAIEER. (FRARHE) . FEEFRmEMNEH, BINCTEF[IPESFESELNGESES), XEFERTLL
Balts B EANE, FETLWENHEIAERNSEHE, BXMitEA, RIUEBUFIENSINESERETM TER, SHEERINAEESEY
KN * KSTESRINIL RIS ZERE RO * K * L), AEERMNEMNFAER, XAKNMNTREZINITEE.

Padding:

 Padding, BiBB Y EF. BIERE, FIEMISMHRNNT, BRINESIREE, HTHEESN, B2 AMENEKE RALEERo BT
BhERRD, MEREXE, BEHERLFERREZ, XEKRXWTFOAESLRNEREHERY, mATUAIT, S TRHRERE, BIENOX
INBUINT, (B{RETBERABLEEDRBIBERN. T HRRXF/NEEE, CNNB|NTPadding@48, RIEATINEECEI, EgINRCERTIGRS,
XHEINSEERNEFIRE, FERFIEGAMESEKR, B SEEEEFRGREE (I89p) FlKernelf9X/)N, AT HAFIEERE
XN, BERNESHSERY, FEERHE, WEFigured X—16 * 6 X/NEEHER, 2133 * 3A/NKIKermel EHEGHERE 194 « 4, TIXSERA]
EINBIEZ—RGEZE, BIBETHTS « 8, RBET3 * 3ikernel, HIHEBIKARO * 6, XitEpaddingtER.

N L

Figure 4 : PaddingZ{jl
EREK:

o ELAERYEIRS, KemelEXBMAILIKERR], MRIEBRBHMIPIKEN ALK (Stride, EEEASER) , BARBHKRAHIEGSS
KA RINA—RE, HIENS208 BNEH A/ NIRIR R IE FigureS.,

N2 13 [7 }a |6 |2 |9

16 6 {9 |8 |7 |4 |3

f:"é,_"a'f"_’s 3 (8 (9 |7 344 s

|7 (8 |36 |6 |3 |4 * 1|0 = @

la[2]1]8[3]a |6 1]o0]3

3124 |1 |9 |8 |3 s N
)N = NN)

0|1(3 (9|2 (1|4 o I\ <A =4

>

Figure 5 : EREK
-—RH, B EARHBEREIANSREGFIKemellIXZTATRAERR (RZREBGA/N AN * n,KernellUK/NAS * f,PaddingfI K/ P BB Ak

n+2p—f n+2

AN 4 1) w (0L 1), ST - SHESTEIE ST ST, HSE ENMESIE] FRORTANE R0, KRN

=HSRR AT HIARGBEIRANASIEN, BRHEGEET B #FHER:~, McBBGEER=H=akRER, RAVBEGE=1"88, FrlA
EMETRIZER, kemnelVHEEAN_HHENNEI=4, F=TMEENNNSEEEGNW/REBEEIER, Figure6R=4#&R1NEXR, FTEBHAZE
4x4x3, mEd=x4=x1,

Convolutions on RGB 1image

4x4

éx%ﬂzh

Figure 6 : =#&1TRE
BERE:

« L ERESRHZMENEELR, TENRRESTHEMSHNEMNRIIL. LIEFigureT/%), BEMEMSBE=4-ETRRYERM D8N T —1
KernelNMSRYAEE, BARERE—MEEHBERN T =%KemellINIK , ISERSBEME—HE, BRATEIMATHERE. REHEESTE
IREVEURAVSE. WXETH, FAEBABRGSX, SHIEERHKemelfIX/MIMNE, BSHEEnin/\FeERSmEmMLE,

Example of a layer

Sk - Yell| _ ~+h &

—]

!
3x3x3 N l

6X6X3 X L —f/—j‘
a PO Thy) qxaxk

X3 X3
l‘l

Figure 7 : BB EEFRMZMILE

JJ

i Epooling:

o EER—ENEGHITA—INENE, BENKR, X—EIMEREREBKEAFE, NLRERLEE, XMATUBSEF 7 CNNRYE /IS,
Figure8ZitAI—1m0l, LHIPERINZ&EAILE (Max pooling) , BIENINXIEHAIGRAE, HIMNERIIEEHIEDNHE. MEDBERN
HIKemel, HRFSH, BRARTERENKemel, XESHALTERMEFIEE, HANEEKemellUXIMIERE, HHEEBEN (BR
EfIKernel ZHIAE T MKernel BRIEF, HUEIRE) . FILUMLEASEYMEMIHSE, BRTHEESENEGRT, RMEMRIZG. S
ANEHGE=HRIRR, keneltBRINIBNNI34E, MBI (FRTERIEE, FAEESRE, kermellINMEHEA KR, XIEINHEH
R—MERE, THEMLER, kernellIMEERER1, FILUATRBEEHHRBEEAEIRIRAN, BEAEN, FEZETER, MEE 4 FHEE
sola, ER=MEERE) .

Figure 8 : “#RKithit

O |00 |~ [N |-
Sy | W | W | O | W

RS

Figure 9 : SH#EXitY
IR RLERE
. SIRBENERBAE. EHE. HHE. 2R, BHESEMMA, RT7TBNBLEEREN1EN, HEERYAERE, ATHME— N EHEIEH
pL8LeNet-58941F, aNFigurel OFf7=,

Neural network example (Lelet-S)
omnvz ¢oolLy

4 v o
(onv | Post | s
=B}
:;b Mol =S £ G an =
s=| LEWBY Q"‘}- 1y 4 ng wxwxlb o
LaWxd s=

Ror L Raser 2

FC3

> o $5) P R

A — i Collnon h A
N i)
)

L}\SLQ (20, 400) Lo uitpurt <)

3¢
Lcj (No)

Figure 10 : HIR#IEZEMLELeNet-5

Andrew Ng

At AIEFCNN:
o SHHENF: EERHZNET, SHREkernelfE, XEENAEHIXERHZE—HFN, RLSHRHETLUMEILLRD, sEExEIRLEITI

- HRRERIGE: EERRSEHS, 5 M IMEFRBERSBABGHIEXNNAIESEX, MEHEHDLX, HEER.
o BRFHEHRN: AHERSIRIBRES AL T AR E S RAVHLE.

—. TRHEZEMLEApythonEIR

Welcome to Course 4's first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including
both forward propagation and (optionally) backward propagation.

Notation:

In

« Superscript [[] denotes an object of the [layer.
= Example: al*! is the 4™ layer activation. W and b3 are the 5™ layer parameters.
« Superscript (i) denotes an object from the ;" example.
= Example: x® is the i training example input.
« Lowerscript ; denotes the ;™ entry of a vector.
= Example: al[l] denotes the i entry of the activations in layer [, assuming this is a fully connected (FC) layer.

« ny, ny and nc denote respectively the height, width and number of channels of a given layer. If you want to reference a specific layer /, you can

PO 1) N 1) I 1)
also write n; , ny,, ne- .
* MHprep nwprevand ncprevdenote respectively the height, width and number of channels of the previous layer. If referencing a specific layer [, this

[l=1] _[i-1] _[I-1]
could also be denoted Ny Ny ,Nc .

We assume that you are already familiar with numpy and/or have completed the previous courses of the specialization. Let's get started!

1 - Packages

Let's first import all the packages that you will need during this assignment.

* numpy (www.numpy.orq) is the fundamental package for scientific computing with Python.
« matplotlib (http://matplotlib.org) is a library to plot graphs in Python.
« np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work.

[1]: import numpy as np
import hbpy
import matplotlib. pyplot as plt

%matplotlib inline

plt. rcParams[’ figure. figsize'] = (5.0, 4.0) # set default size of plots
plt. rcParams[image. interpolation’] = 'nearest’

plt. rcParams[’ image.cmap’] = ' gray’

%load ext autoreload
Y%autoreload 2

np. random. seed (1)

2 - Outline of the Assignment

You will be implementing the building blocks of a convolutional neural network! Each function you will implement will have detailed instructions that will
walk you through the steps needed:

» Convolution functions, including:

= Zero Padding

= Convolve window

= Convolution forward

= Convolution backward (optional)
» Pooling functions, including:

= Pooling forward

= Create mask

= Distribute value

= Pooling backward (optional)

This notebook will ask you to implement these functions from scratch in numpy. In the next notebook, you will use the TensorFlow equivalents of these
functions to build the following model:

X2

CONV RELU POOL

Note that for every forward function, there is its corresponding backward equivalent. Hence, at every step of your forward module you will store some
parameters in a cache. These parameters are used to compute gradients during backpropagation.

—_—r B

FC SOFTMAX

http://localhost:8888/notebooks/jupyter/%E4%BB%A3%E7%A0%81%E4%BD%9C%E4%B8%9A/%E7%AC%AC%E5%9B%9B%E8%AF%BE%E7%AC%AC%E4%B8%80%E5%91%A8%E7%BC%96%E7%A8%8B%E4%BD%9C%E4%B8%9A/assignment/www.numpy.org
http://matplotlib.org/

3 - Convolutional Neural Networks

Although programming frameworks make convolutions easy to use, they remain one of the hardest concepts to understand in Deep Learning. A
convolution layer transforms an input volume into an output volume of different size, as shown below.

Input Output
volume volume

In this part, you will build every step of the convolution layer. You will first implement two helper functions: one for zero padding and the other for
computing the convolution function itself.

3.1 - Zero-Padding

Zero-padding adds zeros around the border of an image:

pad
—

I pad

000 0:0:0:0:0
cloio0i0i0 OO
cioioloi0i0i0iO
coioiooioio 00

o

pa

|

I pad

00000000
coooioiooioio
ooioioiooioio
00000 0:0:0

ad

kel

|

00000 0:0:0
ciol0oi0i00i0io
cioloicioi0ioio
oio/ooioo0i0io0

Figure 1 : Zero-Padding
Image (3 channels, RGB) with a padding of 2.

The main benefits of padding are the following:

» It allows you to use a CONV layer without necessarily shrinking the height and width of the volumes. This is important for building deeper
networks, since otherwise the height/width would shrink as you go to deeper layers. An important special case is the "same" convolution, in which
the height/width is exactly preserved after one layer.

« It helps us keep more of the information at the border of an image. Without padding, very few values at the next layer would be affected by pixels
as the edges of an image.

Exercise: Implement the following function, which pads all the images of a batch of examples X with zeros. Use np.pad
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html). Note if you want to pad the array "a" of shape (5, 5, 5, 5, 5) with pad = 1 for
the 2nd dimension, pad = 3 for the 4th dimension and pad = 0 for the rest, you would do:

a = np.pad(a, ((0,0), (1,1), (0,0), (3,3), (0,0)), ’'constant’, constant values = (..,..))

https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html

In [2]: # GRADED FUNCTION: zero_pad

def zero pad(X, pad):
Pad with zeros all images of the dataset X. The padding is applied to the height and width of an image,
as illustrated in Figure 1.

Argument:
X — python numpy array of shape (m, n H, n W, n C) representing a batch of m images
pad —— integer, amount of padding around each image on vertical and horizontal dimensions

Returns:
X pad — padded image of shape (m, n H + 2%pad, n W + 2%pad, n C)

e

#u#t START CODE HERE ##% (=~ 1 line)
X pad = np.pad(X, ((0, 0), (pad, pad), (pad, pad), (0, 0)), ’constant’, constant values=0)
#urz END CODE HERE ###

return X pad

In [3]: np. random. seed (1)
x = np.random. randn(4, 3, 3, 2)
x_pad = zero pad(x, 2)
print (“x. shape =", x. shape)
print (“x pad. shape =", x pad. shape)
print ("x[1,1] =", x[1,1])
print (“x pad[l,1] =", x pad[l,1])

fig, axarr = plt.subplots(l, 2)
axarr[0].set title(x’
axarr[0]. imshow (x[0, :, :, 0])
axarr[1].set title(x pad’)
axarr[1]. imshow (x_pad[O, :, :, 0])

X. shape = 4, 3, 3, 2)

x pad. shape = (4, 7, 7, 2)

x[1,1] = [[0.90085595 —0.68372786]
[-0. 12289023 -0. 93576943]
[-0. 26788808 0.53035547]]

x _pad[1,1] = [[0. 0.]

0.]

[
[
[
[
[
[

OO OO OO
Ll
I O Y B Y S

0]

Out[3]: <matplotlib. image. AxesImage at 0x7fef958ebc50>
s X ¥ _pad
0a
05
14
15
24
25

Expected Output:

x.shape: 4,3,3,2)
x_pad.shape: 4,7,7,2)
x[1,1]: [[0.90085595 -0.68372786] [-0.12289023 -0.93576943] [-0.26788808 0.53035547]]
x_pad[1,1]: [[0.0.][0.0.][0.0.][0.0.][0.0.][0.0.][0.0.]]

3.2 - Single step of convolution

In this part, implement a single step of convolution, in which you apply the filter to a single position of the input. This will be used to build a
convolutional unit, which:

o Takes an input volume
» Applies a filter at every position of the input
» Outputs another volume (usually of different size)

In

In

[(4]:

[5]:

]ﬁl.]iﬂ :121 () ()
(!(]]El]RU :]' () 11
(!cl (2&3 :lkl jL jL
oj{of[1]|1]0
01 0|0

(WY

I Convolved
mage
Feature
Figure 2 : Convolution operation
with a filter of 2x2 and a stride of 1 (stride = amount you move the window each time you slide)

In a computer vision application, each value in the matrix on the left corresponds to a single pixel value, and we convolve a 3x3 filter with the image by
multiplying its values element-wise with the original matrix, then summing them up. In this first step of the exercise, you will implement a single step of
convolution, corresponding to applying a filter to just one of the positions to get a single real-valued output.

Later in this notebook, you'll apply this function to multiple positions of the input to implement the full convolutional operation.

Exercise: Implement conv_single_step(). Hint (https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.sum.html).

GRADED FUNCTION: conv_single step

def conv single step(a slice prev, W, b):
Apply one filter defined by parameters W on a single slice (a slice prev) of the output activation
of the previous layer.

Arguments:

a slice prev — slice of input data of shape (f, f, n C prev)

W —— Weight parameters contained in a window — matrix of shape (f, f, n C prev)
b —— Bias parameters contained in a window — matrix of shape (1, 1, 1)

Returns:
7 — a scalar value, result of convolving the sliding window (W, b) on a slice x of the input data

i

#pr START CODE HERE ##%# (=~ 2 lines of code)

Element—-wise product between a slice and W. Add bias.
s = np.multiply(a_slice prev, W) + b

Sum over all entries of the volume s

Z = np. sum(s)

#a# END CODE HERE ###

return 7

np. random. seed (1)

a slice prev = np.random. randn(4, 4, 3)
W = np. random. randn (4, 4, 3)

b = np. random. randn (1, 1, 1)

Z = conv _single step(a slice prev, W, b)
print ("2 =7, 7)

Z = —23.1602122025

Expected Output:

Z -23.1602122025

3.3 - Convolutional Neural Networks - Forward pass

In the forward pass, you will take many filters and convolve them on the input. Each 'convolution' gives you a 2D matrix output. You will then stack
these outputs to get a 3D volume:

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.sum.html

How do convolutions work?

input volume output volume
(n_H_prev, n_W_prev, n_C_prev) (n_H,n_W, n_C)
First filter output ~ Second filter output
/ (n_H, n_w) (n_H, n_w)
convolve fi stack
R ilter OL?,DUIS
 — Filter 1 Filter 2
(f, f, n_C_prev) (f, f, n_C_prev)
n_C = 2 = #filters @
0:00/0:37

Exercise: Implement the function below to convolve the filters W on an input activation A_prev. This function takes as input A_preyv, the activations
output by the previous layer (for a batch of m inputs), F filters/weights denoted by W, and a bias vector denoted by b, where each filter has its own
(single) bias. Finally you also have access to the hyperparameters dictionary which contains the stride and the padding.

Hint:
1. To select a 2x2 slice at the upper left corner of a matrix "a_prev" (shape (5,5,3)), you would do:
a slice prev = a prev[0:2,0:2, ;]

This will be useful when you will define a_slice_ prev below, using the start/end indexes you will define.
2. To define a_slice you will need to first define its corners vert_start, vert_end, horiz_start and horiz_end. This figure may be helpful for you to
find how each of the corner can be defined using h, w, f and s in the code below.

o 1 2 3 4

horizontal
255 231 42 22
128 * 8 2 vert _start =1
2 | vert _end =73
34 44 187 92)
3 1 horiz_start =0
34 76 232 124 horiz_end =2
67 83 194 202

vertical
Figure 3 : Definition of a slice using vertical and horizontal start/end (with a 2x2 filter)
This figure shows only a single channel.

Reminder: The formulas relating the output shape of the convolution to the input shape is:

ny = [nﬂprev—f + 2 X pad
stride

ny = Lanrev_f + 2 X pad
stride

nc = number of filters used in the convolution

For this exercise, we won't worry about vectorization, and will just implement everything with for-loops.

In [6]: # GRADED FUNCTION: conv forward

def conv forward (A prev, W, b, hparameters) :

nnn

Implements the forward propagation for a convolution function

Arguments:

A prev —— output activations of the previous layer, numpy array of shape (m, n H prev, n W prev, n C prev)
W — Weights, numpy array of shape (f, f, n C prev, n C)

b —— Biases, numpy array of shape (1, 1, 1, n C)

hparameters — python dictionary containing “stride” and “pad”

Returns:
7 — conv output, numpy array of shape (m, n H, n W, n C)
cache —— cache of values needed for the conv backward() function

Y

#a START CODE HERE ###
Retrieve dimensions from A prev’s shape (=~1 Iline)
(m, n H prev, n W prev, n C prev) = A prev. shape

Retrieve dimensions from W's shape (=~1 line)
(f, f, n C prev, n C) = W. shape

Retrieve information from “hparameters” (=~2 lines)
stride = hparameters[’ stride’]
pad = hparameters[pad’]

Compute the dimensions of the CONV output volume using the formula given above. Hint: use int() to floor. (=2 lines)
nH=1+int((n H prev + 2 * pad — f) / stride)
nW=1+int((n W prev + 2 % pad — f) / stride)

Initialize the output volume 7 with zeros. (=1 Iline)
7Z = np.zeros((m, n H, nW, nC))

Create A prev_pad by padding A prev
A prev pad = zero pad(A prev, pad)

for i in range(m): # loop over the batch of training examples
a prev pad = A prev pad[i] # Select ith training example’s padded activation
for h in range(n H): # loop over vertical axis of the output volume
for w in range(n W) : # loop over horizontal axis of the output volume
for ¢ in range(n C): # loop over channels (= #filters) of the output volume

Find the corners of the current “slice” (=4 lines)
vert _start = h * stride

vert end = vert start + f

horiz start = w * stride

horiz_end = horiz_start + f

Use the corners to define the (3D) slice of a prev pad (See Hint above the cell). (=1 Iline)
a slice prev = a prev pad[vert start:vert end, horiz start:horiz end, :]

Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (=1 line)
Zli, h, w, c¢] = np.sum(np. multiply(a slice prev, W[:, :, :, cl) + bl:, :, :, cl)

END CODE HERE

Making sure your output shape is correct
assert(Z. shape == (m, n H, n W, n C))

Save information in “cache” for the backprop
cache = (A prev, W, b, hparameters)

return 7, cache

In [7]: np.random. seed(1)
A prev = np. random. randn (10, 4, 4, 3)
W = np. random. randn (2, 2, 3, 8)
b = np. random. randn(1, 1, 1, 8)
hparameters = {"pad” : 2,
“stride”: 1}

Z, cache conv = conv forward(A prev, W, b, hparameters)
print ("Z’ s mean =", np.mean(Z))
print (“cache conv[0][1][2][3] =", cache conv[0][1][2][3])

7' s mean = 0. 155859324889
cache_conv[0][1][2][3] = [-0.20075807 0.18656139 0.41005165]

Expected Output:

Z's mean 0.155859324889

cache_conv[0][1][2][3] [-0.20075807 0.18656139 0.41005165]

Finally, CONV layer should also contain an activation, in which case we would add the following line of code:

Convolve the window to get back one output neuron
Zli, h, w, c] = ...

Apply activation

Ali, h, w, c] = activation(Z[i, h, w, cl)

You don't need to do it here.

4 - Pooling layer

The pooling (POOL) layer reduces the height and width of the input. It helps reduce computation, as well as helps make feature detectors more
invariant to its position in the input. The two types of pooling layers are:

« Max-pooling layer: slides an (f, f) window over the input and stores the max value of the window in the output.
« Average-pooling layer: slides an (f, f) window over the input and stores the average value of the window in the output.

Max Pool Average Pool

Mazx-Pool with a Average Pool with
2 by 2 filter and a 2 by 2 filter and
stride 2. stride 2.
Andrew Ng Andrew Ng

These pooling layers have no parameters for backpropagation to train. However, they have hyperparameters such as the window size f. This specifies
the height and width of the fxf window you would compute a max or average over.

4.1 - Forward Pooling

Now, you are going to implement MAX-POOL and AVG-POOL, in the same function.
Exercise: Implement the forward pass of the pooling layer. Follow the hints in the comments below.

Reminder: As there's no padding, the formulas binding the output shape of the pooling to the input shape is:

Hprey f
ng = : J 1
stride
Ny,
prev
ny=|———|+1
W stride J

nc = ncprev

In [8]: # GRADED FUNCTION: pool forward

def pool forward(A prev, hparameters, mode = “max”):

nnn

Implements the forward pass of the pooling layer

Arguments:

A prev — Input data, numpy array of shape (m, n H prev, n W prev, n C prev)

hparameters —— python dictionary containing “f” and “stride”

mode —— the pooling mode you would like to use, defined as a string (“max” or “average”)

Returns:

A — output of the pool layer, a numpy array of shape (m, n H, n W, n C)

cache —— cache used in the backward pass of the pooling layer, contains the input and hparameters

nnn

Ketrieve dimensions from the Input shape
(m, n H prev, n W prev, n C prev) = A prev. shape

Retrieve hyperparameters from “hparameters”
f = hparameters[”f”]
stride = hparameters[”stride”]

Define the dimensions of the output
nH=1int(1 + (nH prev - f) / stride)
nW=1int(l + (n W prev — f) / stride)
n C = n C prev

Initialize output matrix A
A = np.zeros((m, nH, nW, nC))

#a# START CODE HERE ###

for i in range(m): # loop over the training examples
for h in range(n H): # loop on the vertical axis of the output volume
for w in range(n W) : # loop on the horizontal axis of the output volume
for ¢ in range (n C): # loop over the channels of the output volume

Find the corners of the current “slice” (=4 lines)
vert start = h *% stride

vert _end = vert start + f

horiz start = w * stride

horiz _end = horiz start + f

Use the corners to define the current slice on the ith training example of A prev, channel c. (=1 line)
a prev_slice = A prev[i, vert start:vert end, horiz start:horiz end, c]

Compute the pooling operation on the slice. Use an if statment to differentiate the modes. Use np. max/np. mean

if mode == "max”:
Ali, h, w, c] = np.max(a prev slice)
elif mode == "average”:

Ali, h, w, c¢] = np.mean(a prev slice)
#a7 END CODE HERE ##%

Store the input and hparameters in “cache” for pool backward ()
cache = (A prev, hparameters)

Making sure your output shape is correct
assert (A. shape == (m, n H, n W, nC))

return A, cache

In [9]: np.random. seed (1)
A prev = np.random. randn(2, 4, 4, 3)
hparameters = {“stride” : 1, “f”: 4}

A, cache = pool forward(A prev, hparameters)

print ("mode = max”)

print ("A =7, A)

print ()

A, cache = pool forward(A prev, hparameters, mode = “average”)
print ("mode = average”)

print (A =7, A)

mode = max
A= [[[[1.74481176 1.6924546 2.10025514]]]

[[[1.19891788 1.51981682 2.18557541]]]]

mode = average
A = [[[[-0.09498456 0.11180064 —0.14263511]]]

[[[-0.09525108 0.28325018 0.33035185]]]]

Expected Output:

[I[1.74481176 1.6924546 2.10025514]]]

A= l[[1.19891788 1.51981682 2.18557541]]]

[[[[-0.09498456 0.11180064 -0.14263511]]]

A= Tl[-0.09525108 0.28325018 0.33035185]]]

Congratulations! You have now implemented the forward passes of all the layers of a convolutional network.

The remainer of this notebook is optional, and will not be graded.

5 - Backpropagation in convolutional neural networks (OPTIONAL / UNGRADED)

In modern deep learning frameworks, you only have to implement the forward pass, and the framework takes care of the backward pass, so most
deep learning engineers don't need to bother with the details of the backward pass. The backward pass for convolutional networks is complicated. If
you wish however, you can work through this optional portion of the notebook to get a sense of what backprop in a convolutional network looks like.

When in an earlier course you implemented a simple (fully connected) neural network, you used backpropagation to compute the derivatives with
respect to the cost to update the parameters. Similarly, in convolutional neural networks you can to calculate the derivatives with respect to the cost in
order to update the parameters. The backprop equations are not trivial and we did not derive them in lecture, but we briefly presented them below.

5.1 - Convolutional layer backward pass

Let's start by implementing the backward pass for a CONV layer.

5.1.1 - Computing dA:

This is the formula for computing dA with respect to the cost for a certain filter W, and a given training example:
dA+ = 2 2 W, X dZ, (1)

Where W, is a filter and dZ,,,, is a scalar corresponding to the gradient of the cost with respect to the output of the conv layer Z at the hth row and wth
column (corresponding to the dot product taken at the ith stride left and jth stride down). Note that at each time, we multiply the the same filter W, by a
different dZ when updating dA. We do so mainly because when computing the forward propagation, each filter is dotted and summed by a different
a_slice. Therefore when computing the backprop for dA, we are just adding the gradients of all the a_slices.

In code, inside the appropriate for-loops, this formula translates into:

da prev pad[vert start:vert end, horiz start:horiz end, :] += W[:,:, :,c] * dZ[i, h, w, c]

5.1.2 - Computing dW:
This is the formula for computing dW,. (dW.. is the derivative of one filter) with respect to the loss:
ng nw
dW.+ = Z Z glice X A2y, ()
h=0 w=0

Where ay;.. corresponds to the slice which was used to generate the acitivation Z,-j. Hence, this ends up giving us the gradient for W with respect to
that slice. Since it is the same W, we will just add up all such gradients to get dW.

In code, inside the appropriate for-loops, this formula translates into:

dWwl:, :,:,c] += a slice * dZ[i, h, w, c]

5.1.3 - Computing db:

This is the formula for computing db with respect to the cost for a certain filter W..:
db = Z Z dz,, (3)
h w

As you have previously seen in basic neural networks, db is computed by summing dZ. In this case, you are just summing over all the gradients of the
conv output (Z) with respect to the cost.

In code, inside the appropriate for-loops, this formula translates into:
dbl:,:,:,c] += dZ[i, h, w, c]

Exercise: Implement the conv_backward function below. You should sum over all the training examples, filters, heights, and widths. You should then
compute the derivatives using formulas 1, 2 and 3 above.

In [10]: def conv backward(dZ, cache):

nnn

Implement the backward propagation for a convolution function

Arguments:

dZ —— gradient of the cost with respect to the output of the conv layer (Z), numpy array of shape (m, n H, n W, n C)
cache —— cache of values needed for the conv backward(), output of conv forward()

Returns:

dA prev —— gradient of the cost with respect to the input of the conv layer (A prev),
numpy array of shape (m, n H prev, n W prev, n C prev)
dW — gradient of the cost with respect to the weights of the conv layer (W)
numpy array of shape (f, f, n C prev, n C)
db —— gradient of the cost with respect to the biases of the conv layer (b)
numpy array of shape (1, 1, 1, n C)

Y

#a# START CODE HERE ###
Retrieve information from “cache”
(A prev, W, b, hparameters) = cache

Retrieve dimensions from A prev’s shape
(m, n H prev, n W prev, n C prev) = A prev. shape

Retrieve dimensions from W's shape
(f, f, n C prev, n C) = W. shape

Retrieve information from “hparameters”
stride = hparameters[’ stride’]
pad = hparameters[’ pad’]

Retrieve dimensions from dZ’s shape
(m, nH, nW, nC) = dZ. shape

Initialize dA prev, dW, db with the correct shapes
dA prev = np.zeros((m, n H prev, n W prev, n C prev))
dW = np. zeros((f, f, n C prev, n C))

db = np.zeros((1, 1, 1, n C))

Pad A prev and dA prev
A prev pad = zero pad(A prev, pad)
dA prev pad = zero pad(dA prev, pad)

for i in range(m): # loop over the training examples
select ith training example from A prev pad and dA _prev pad

a prev pad = A prev pad[i]
da prev pad = dA prev padl[i]

for h in range(n H): # loop over vertical axis of the output volume
for w in range(n W): # loop over horizontal axis of the output volume
for ¢ in range(n C): # loop over the channels of the output volume

Find the corners of the current “slice”
vert _start = h * stride

vert end = vert start + f

horiz start = w * stride

horiz_end = horiz start + f

Use the corners to define the slice from a prev pad
a slice = a prev pad[vert start:vert end, horiz start:horiz end, :]

Update gradients for the window and the filter’s parameters using the code formulas given above

da prev pad[vert start:vert end, horiz start:horiz end, :] += W[:,:, :,c] * dZ[i, h, w, c]
dWl:,:,:,c] += a slice * dZ[i, h, w, c]
dbl:, :,:,c] += dZ[i, h, w, c]

Set the ith training example’s dA prev to the unpaded da prev pad (Hint: use X[pad:-pad, pad:-pad, :])
dA prevli, :, :, :] = dA prev padli, pad:—pad, pad:-pad, :]
#a# END CODE HERE ###

Making sure your output shape is correct
assert (dA prev. shape == (m, n H prev, n W prev, n C prev))

return dA prev, dW, db

In [11]: np. random. seed (1)
dA, dW, db = conv backward(Z, cache conv)
print ("dA mean =", np.mean(dA))
print ("dW mean =", np.mean(dW))
print ("db_mean =", np.mean(db))

dA mean = 9. 60899067587
dW mean = 10. 5817412755
db_mean = 76. 3710691956

Expected Output:

In

In

[12]:

[13]:

dA_mean 9.60899067587
dW_mean 10.5817412755

db_mean 76.3710691956

5.2 Pooling layer - backward pass

Next, let's implement the backward pass for the pooling layer, starting with the MAX-POOL layer. Even though a pooling layer has no parameters for
backprop to update, you still need to backpropagation the gradient through the pooling layer in order to compute gradients for layers that came before
the pooling layer.

5.2.1 Max pooling - backward pass

Before jumping into the backpropagation of the pooling layer, you are going to build a helper function called create mask from window() which does
the following:

X=[1 3] . M=[° 0] @
4 2 1 0

As you can see, this function creates a "mask" matrix which keeps track of where the maximum of the matrix is. True (1) indicates the position of the
maximum in X, the other entries are False (0). You'll see later that the backward pass for average pooling will be similar to this but using a different
mask.

Exercise: Implement create mask from window (). This function will be helpful for pooling backward. Hints:

« np.max() () may be helpful. It computes the maximum of an array.
« If you have a matrix X and a scalar x: A = (X == x) will return a matrix A of the same size as X such that:

Ali, j] = True if X[i, j] = x
Ali, j] = False if X[i,j] != x

+ Here, you don't need to consider cases where there are several maxima in a matrix.

def create mask from window (x) :

e

Creates a mask from an input matrix x, to identify the max entry of x.

Arguments:
x — Array of shape (f, f)

Returns:
mask —— Array of the same shape as window, contains a True at the position corresponding to the max entry of x.

nnn

#rt START CODE HERE ##% (=~1 line)
mask = (x == np.max (x))
#u7 END CODE HERE ###

return mask

np. random. seed (1)

X = np. random. randn (2, 3)

mask = create mask from window (x)
printCx =7, x)

print ("mask = 7, mask)

x = [[1.62434536 -0.61175641 —0.52817175]
[-1. 07296862 0.86540763 —2. 3015387 1]
mask = [[True False False]
[False False False]]

Expected Output:

[[1.62434536 -0.61175641 -0.52817175]
[-1.07296862 0.86540763 -2.3015387]]

[[True False False]

mask = [False False False]]

Why do we keep track of the position of the max? It's because this is the input value that ultimately influenced the output, and therefore the cost.
Backprop is computing gradients with respect to the cost, so anything that influences the ultimate cost should have a non-zero gradient. So, backprop
will "propagate” the gradient back to this particular input value that had influenced the cost.

5.2.2 - Average pooling - backward pass

In max pooling, for each input window, all the "influence" on the output came from a single input value--the max. In average pooling, every element of
the input window has equal influence on the output. So to implement backprop, you will now implement a helper function that reflects this.

For example if we did average pooling in the forward pass using a 2x2 filter, then the mask you'll use for the backward pass will look like:

http://localhost:8888/notebooks/jupyter/%E4%BB%A3%E7%A0%81%E4%BD%9C%E4%B8%9A/%E7%AC%AC%E5%9B%9B%E8%AF%BE%E7%AC%AC%E4%B8%80%E5%91%A8%E7%BC%96%E7%A8%8B%E4%BD%9C%E4%B8%9A/assignment/5-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%B3%BB%E5%88%97%EF%BC%885%EF%BC%89%EF%BC%9A%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9CCNN%E4%B9%8B--%E5%8E%9F%E7%90%86%E5%8F%8Apython%E5%AE%9E%E7%8E%B0.ipynb

In

In

[14]:

[15]:

&)

Z=1 = alzzll/4 1/4l

1/4 1/4
This implies that each position in the dZ matrix contributes equally to output because in the forward pass, we took an average.

Exercise: Implement the function below to equally distribute a value dz through a matrix of dimension shape. Hint (https://docs.scipy.org/doc/numpy-
1.13.0/reference/generated/numpy.ones.html)

def distribute value(dz, shape):

nnn

Distributes the input value in the matrix of dimension shape

Arguments:
dz — input scalar
shape — the shape (n H, n W) of the output matrix for which we want to distribute the value of dz

Returns:
a — Array of size (n_ H, n W) for which we distributed the value of dz

e

7 START CODE HERE ###
Retrieve dimensions from shape (=~1 line)
(n.H, n W) = shape

Compute the value to distribute on the matrix (=1 Iline)
average = dz / (n H * n W)

Create a matrix where every entry is the “average” value (/1 line)
a = np. ones (shape) * average
#u7 END CODE HERE ###

return a

a = distribute value(2, (2,2))
print (distributed value =, a)

distributed value = [[0.5 0.5]
[0.5 0.5]]

Expected Output:

[[0.50.5]

distributed_value = [0.5 0.5]]

5.2.3 Putting it together: Pooling backward

You now have everything you need to compute backward propagation on a pooling layer.

Exercise: Implement the pool backward function in both modes (“max” and “average”). You will once again use 4 for-loops (iterating over training
examples, height, width, and channels). You should use an if/elif statement to see if the mode is equal to ’max’ or " average’ . If it is equal to
'average' you should use the distribute value () function you implemented above to create a matrix of the same shape as a_slice. Otherwise, the
mode is equal to 'max', and you will create a mask with create mask_from _window () and multiply it by the corresponding value of dZ.

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ones.html

In

[16]:

def pool backward(dA, cache, mode = “max”

nnn

Implements the backward pass of the pooling layer

Arguments:

dA — gradient of cost with respect to the output of the pooling layer, same shape as A

cache —— cache output from the forward pass of the pooling layer, contains the layer’ s input and hparameters
mode —— the pooling mode you would like to use, defined as a string (“max” or “average”)

Returns:

dA prev —— gradient of cost with respect to the input of the pooling layer, same shape as A prev

e

START CODE HERE

Retrieve information from cache (/1 line)
(A prev, hparameters) = cache

Retrieve hyperparameters from “hparameters” (=2 lines)
stride = hparameters[’ stride’]

f = hparameters[f’]

Retrieve dimensions from A prev’s shape and dA’s shape (=~2 lines)
m, n_ H prev, n W prev, n C prev = A prev. shape
m, n H, nW, n C = dA. shape

Initialize dA prev with zeros (=1 line)
dA prev = np. zeros like (A prev)

for i in range(m):

loop over the training examples

select training example from A prev (=~1 line)
a prev = A prev[i]

for h in range(n H): # loop on the vertical axis
for w in range(n W) : # loop on the horizontal axis
for ¢ in range(n C): # loop over the channels (depth)

Find the corners of the current “slice” (=4 lines)
vert _start = h * stride

vert end = vert start + f

horiz start = w * stride

horiz end = horiz start + f

Compute the backward propagation in both modes.
if mode == "max”:

a4

Use the corners and “c¢” to define the current slice from a prev (=1 line)

a prev_slice = a prev[vert start:vert end, horiz start:horiz end, c]

Create the mask from a prev slice (=~1 Iline)

mask = create mask from window(a prev slice)

Set dA prev to be dA prev + (the mask multiplied by the correct entry of dA) (=1 Iline)

dA prev[i, vert start: vert end, horiz start: horiz end, c] += mask * dA[i, vert start, horiz start, c]

elif mode == "average”:

END CODE

Get the value a from dA (=1 line)

da = dA[i, vert start, horiz start, c]

Define the shape of the filter as fxt (=1 line)

shape = (f, f)

Distribute it to get the correct slice of dA prev. i.e. Add the distributed value of da. (=1 Iline)
dA prev[i, vert start: vert end, horiz start: horiz end, c] += distribute value(da, shape)

Making sure your output shape is correct
assert (dA prev. shape == A prev. shape)

return dA prev

In [17]: np. random. seed (1)
A prev = np. random. randn(5, 5, 3, 2)
hparameters = {“stride” : 1, “f”: 2}
A, cache = pool forward(A prev, hparameters)
dA = np. random. randn(5, 4, 2, 2)

dA prev = pool backward(dA, cache, mode = "max”)

print ("mode = max”)

print (mean of dA =, np.mean(dA))
print C dA prev[l, 1] =, dA prev[l,1])
print ()

dA prev = pool backward(dA, cache, mode = “average”)
print ("mode = average”)

print (mean of dA =, np.mean(dA))
print C dA prev([l,1] =, dA prevl[l,1])

mode = max
mean of dA = 0.145713902729

dA prev([l,1] = [[0. 0.]
[5.05844394 —1.68282702]
[0. 0. 1]

mode = average

mean of dA = 0.145713902729

dA prev[l,1] = [[0.08485462 0.2787552]
[1.26461098 —0.25749373]
[1.17975636 —0.53624893]]

Expected Output:

mode = max:
mean of dA = 0.145713902729
[[0.0.]
dA_prev[1,1] = [5.05844394 -1.68282702]
[0.0.]]
mode = average
mean of dA = 0.145713902729

[0.08485462 0.2787552 |
dA_prev[1,1]= [1.26461098 -0.25749373]
[1.17975636 -0.53624893]]

Congratulations !

Congratulation on completing this assignment. You now understand how convolutional neural networks work. You have implemented all the building
blocks of a neural network. In the next assignment you will implement a ConvNet using TensorFlow.

