/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/memory/detail/buddy_allocator.h" #include #include "gflags/gflags.h" #include "glog/logging.h" #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \ defined(PADDLE_WITH_MLU) || defined(PADDLE_WITH_ASCEND_CL) #define USE_DEVICE DECLARE_uint64(reallocate_gpu_memory_in_mb); #endif #ifdef PADDLE_WITH_MLU #include "paddle/fluid/platform/device/mlu/mlu_info.h" #endif namespace paddle { namespace memory { namespace detail { BuddyAllocator::BuddyAllocator( std::unique_ptr system_allocator, size_t min_chunk_size, size_t max_chunk_size, size_t extra_padding_size) : min_chunk_size_(min_chunk_size), max_chunk_size_(max_chunk_size), extra_padding_size_(extra_padding_size), cache_(system_allocator->UseGpu()), system_allocator_(std::move(system_allocator)) {} BuddyAllocator::~BuddyAllocator() { VLOG(10) << "BuddyAllocator Disconstructor makes sure that all of these " "have actually been freed"; while (!pool_.empty()) { auto block = static_cast(std::get<2>(*pool_.begin())); auto desc = cache_.LoadDesc(block); VLOG(10) << "Free from block (" << block << ", " << desc->get_total_size() << ")"; system_allocator_->Free(block, desc->get_total_size(), desc->get_index()); cache_.Invalidate(block); pool_.erase(pool_.begin()); } } inline size_t align(size_t size, size_t alignment) { size_t remaining = size % alignment; return remaining == 0 ? size : size + (alignment - remaining); } void* BuddyAllocator::Alloc(size_t unaligned_size) { // adjust allocation alignment size_t size = align(unaligned_size + sizeof(MemoryBlock::Desc) + extra_padding_size_, min_chunk_size_); VLOG(10) << "alloc: " << unaligned_size << ", padding for desc: " << sizeof(MemoryBlock::Desc) << ", extra padding: " << extra_padding_size_ << ", alignment: " << min_chunk_size_; // acquire the allocator lock std::lock_guard lock(mutex_); VLOG(10) << "Allocate " << unaligned_size << " bytes from chunk size " << size; // if the allocation is huge, send directly to the system allocator if (size > max_chunk_size_) { VLOG(10) << "Allocate from system allocator."; return SystemAlloc(size); } // query and allocate from the existing chunk auto it = FindExistChunk(size); // refill the pool if failure if (it == pool_.end()) { it = RefillPool(size); // if still failure, fail fatally if (it == pool_.end()) { return nullptr; } } else { VLOG(10) << "Allocation from existing memory block " << std::get<2>(*it) << " at address " << reinterpret_cast(std::get<2>(*it))->Data(); } total_used_ += size; total_free_ -= size; // split the allocation and return data for use return reinterpret_cast(SplitToAlloc(it, size))->Data(); } void BuddyAllocator::Free(void* p) { // Point back to metadata auto block = static_cast(p)->Metadata(); // Acquire the allocator lock std::lock_guard lock(mutex_); VLOG(10) << "Free from address " << block; auto* desc = cache_.LoadDesc(block); if (desc->get_type() == MemoryBlock::HUGE_CHUNK) { VLOG(10) << "Free directly from system allocator"; system_allocator_->Free(block, desc->get_total_size(), desc->get_index()); // Invalidate GPU allocation from cache cache_.Invalidate(block); return; } block->MarkAsFree(&cache_); total_used_ -= desc->get_total_size(); total_free_ += desc->get_total_size(); // Trying to merge the right buddy MemoryBlock* right_buddy = block->GetRightBuddy(&cache_); if (right_buddy) { VLOG(10) << "Merging this block " << block << " with its right buddy " << right_buddy; auto rb_desc = cache_.LoadDesc(right_buddy); if (rb_desc->get_type() == MemoryBlock::FREE_CHUNK) { // Take away right buddy from pool pool_.erase(IndexSizeAddress(rb_desc->get_index(), rb_desc->get_total_size(), right_buddy)); // merge its right buddy to the block block->Merge(&cache_, right_buddy); } } // Trying to merge the left buddy MemoryBlock* left_buddy = block->GetLeftBuddy(&cache_); if (left_buddy) { VLOG(10) << "Merging this block " << block << " with its left buddy " << left_buddy; // auto left_buddy = block->left_buddy(cache_); auto* lb_desc = cache_.LoadDesc(left_buddy); if (lb_desc->get_type() == MemoryBlock::FREE_CHUNK) { // Take away right buddy from pool pool_.erase(IndexSizeAddress(lb_desc->get_index(), lb_desc->get_total_size(), left_buddy)); // merge the block to its left buddy left_buddy->Merge(&cache_, block); block = left_buddy; desc = lb_desc; } } // Dumping this block into pool VLOG(10) << "Inserting free block (" << block << ", " << desc->get_total_size() << ")"; pool_.insert( IndexSizeAddress(desc->get_index(), desc->get_total_size(), block)); } uint64_t BuddyAllocator::Release() { std::lock_guard lock(mutex_); int num = 0; uint64_t bytes = 0; for (auto iter = pool_.begin(); iter != pool_.end();) { auto remain_size = std::get<1>(*iter); auto remain_ptr = std::get<2>(*iter); auto found = chunks_.find({remain_size, remain_ptr}); if (found != chunks_.end()) { size_t index = found->second; ++num; bytes += remain_size; total_free_ -= remain_size; auto block = static_cast(remain_ptr); system_allocator_->Free(remain_ptr, remain_size, index); cache_.Invalidate(block); iter = pool_.erase(iter); } else { iter++; } } VLOG(10) << "Release " << num << " chunks, Free " << bytes << " bytes."; return bytes; } size_t BuddyAllocator::Used() { return total_used_; } size_t BuddyAllocator::GetMinChunkSize() { return min_chunk_size_; } size_t BuddyAllocator::GetMaxChunkSize() { return max_chunk_size_; } void* BuddyAllocator::SystemAlloc(size_t size) { size_t index = 0; void* p = system_allocator_->Alloc(&index, size); VLOG(10) << "Allocated " << p << " from system allocator."; if (p == nullptr) return nullptr; static_cast(p)->Init(&cache_, MemoryBlock::HUGE_CHUNK, index, size, nullptr, nullptr); return static_cast(p)->Data(); } BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool( size_t request_bytes) { size_t allocate_bytes = max_chunk_size_; size_t index = 0; #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) allocate_bytes = DeviceAllocateSize(&platform::GpuInitAllocSize, &platform::GpuReallocSize, request_bytes); #elif defined(PADDLE_WITH_ASCEND_CL) allocate_bytes = DeviceAllocateSize(&platform::NPUInitAllocSize, &platform::NPUReallocSize, request_bytes); #elif defined(PADDLE_WITH_MLU) allocate_bytes = DeviceAllocateSize(&platform::MLUInitAllocSize, &platform::MLUReallocSize, request_bytes); #endif // Allocate a new block void* p = system_allocator_->Alloc(&index, allocate_bytes); if (p == nullptr) return pool_.end(); VLOG(10) << "Creating and inserting new block " << p << " from system allocator"; static_cast(p)->Init(&cache_, MemoryBlock::FREE_CHUNK, index, allocate_bytes, nullptr, nullptr); total_free_ += allocate_bytes; // record the chunk. chunks_.insert({{allocate_bytes, p}, index}); // dump the block into pool return pool_.insert(IndexSizeAddress(index, allocate_bytes, p)).first; } BuddyAllocator::PoolSet::iterator BuddyAllocator::FindExistChunk(size_t size) { size_t index = 0; while (1) { auto it = pool_.lower_bound(IndexSizeAddress(index, size, nullptr)); // no match chunk memory if (it == pool_.end()) return it; if (std::get<0>(*it) > index) { // find suitable one if (std::get<1>(*it) >= size) { return it; } // update and continue index = std::get<0>(*it); continue; } return it; } } void* BuddyAllocator::SplitToAlloc(BuddyAllocator::PoolSet::iterator it, size_t size) { auto block = static_cast(std::get<2>(*it)); auto desc = cache_.LoadDesc(block); pool_.erase(it); VLOG(10) << "Split block (" << block << ", " << desc->get_total_size() << ") into"; block->Split(&cache_, size); VLOG(10) << "Left block (" << block << ", " << desc->get_total_size() << ")"; desc->set_type(MemoryBlock::ARENA_CHUNK); // the rest of memory if exist MemoryBlock* right_buddy = block->GetRightBuddy(&cache_); if (right_buddy) { auto* rb_desc = cache_.LoadDesc(right_buddy); if (rb_desc->get_type() == MemoryBlock::FREE_CHUNK) { VLOG(10) << "Insert right block (" << right_buddy << ", " << rb_desc->get_total_size() << ")"; pool_.insert(IndexSizeAddress(rb_desc->get_index(), rb_desc->get_total_size(), right_buddy)); } } return block; } size_t BuddyAllocator::DeviceAllocateSize( std::function init_allocate_size_func, std::function re_allocate_size_func, size_t request_bytes) { size_t allocate_bytes = max_chunk_size_; #if defined(USE_DEVICE) const bool use_gpu = system_allocator_->UseGpu(); VLOG(10) << "use_gpu " << use_gpu << ", total_used " << total_used_ << ", total_free " << total_free_; if (use_gpu) { if (total_used_ == 0 && total_free_ == 0) { // Compute the allocation size for gpu for the first allocation. allocate_bytes = std::max(init_allocate_size_func(), request_bytes); } else { // Compute the re-allocation size, we store the re-allocation size when // user set FLAGS_reallocate_gpu_memory_in_mb to fix value. if (realloc_size_ == 0 || FLAGS_reallocate_gpu_memory_in_mb == 0ul) { realloc_size_ = re_allocate_size_func(); } allocate_bytes = std::max(realloc_size_, request_bytes); } } #endif return allocate_bytes; } } // namespace detail } // namespace memory } // namespace paddle