# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ When training a model, it's often useful to decay the learning rate during training process, this is called learning_rate_decay. There are many strategies to do this, this module will provide some classical method. User can also implement their own learning_rate_decay strategy according to this module. """ from __future__ import print_function from . import control_flow from . import nn from . import ops from . import tensor from ..initializer import init_on_cpu from ..framework import default_main_program, Parameter, unique_name, name_scope __all__ = [ 'exponential_decay', 'natural_exp_decay', 'inverse_time_decay', 'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS' ] def _decay_step_counter(begin=0): # the first global step is zero in learning rate decay global_step = nn.autoincreased_step_counter( counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1) global_step = tensor.cast(global_step, 'float32') return global_step def noam_decay(d_model, warmup_steps): """ Noam decay method. The numpy implementation of noam decay as follows. >>> import numpy as np >>> lr_value = np.power(d_model, -0.5) * np.min([ >>> np.power(current_steps, -0.5), >>> np.power(warmup_steps, -1.5) * current_steps]) Please reference `attention is all you need `_. Args: d_model(Variable): The dimensionality of input and output of model. warmup_steps(Variable): A super parameter. Returns: The decayed learning rate. """ with default_main_program()._lr_schedule_guard(): global_step = _decay_step_counter(1) a = global_step**-0.5 b = (warmup_steps**-1.5) * global_step lr_value = (d_model**-0.5) * nn.elementwise_min(a, b) return lr_value def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False): """ Applies exponential decay to the learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, the learning rate will be decayed by 'decay_rate' every 'decay_steps' steps. >>> if staircase == True: >>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps) >>> else: >>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) Args: learning_rate(Variable|float): The initial learning rate. decay_steps(int): See the decay computation above. decay_rate(float): The decay rate. See the decay computation above. staircase(Boolean): If True, decay the learning rate at discrete intervals. Default: False Returns: Variable: The decayed learning rate Examples: .. code-block:: python base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.exponential_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) sgd_optimizer.minimize(avg_cost) """ with default_main_program()._lr_schedule_guard(): global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate * (decay_rate**div_res) return decayed_lr def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False): """Applies natural exponential decay to the initial learning rate. >>> if not staircase: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) >>> else: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) Args: learning_rate: A scalar float32 value or a Variable. This will be the initial learning rate during training decay_steps: A Python `int32` number. decay_rate: A Python `float` number. staircase: Boolean. If set true, decay the learning rate every decay_steps. Returns: The decayed learning rate """ with default_main_program()._lr_schedule_guard(): global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res) return decayed_lr def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False): """ Applies inverse time decay to the initial learning rate. When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, an inverse decay function will be applied to the initial learning rate. >>> if staircase == True: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step)) >>> else: >>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step) Args: learning_rate(Variable|float): The initial learning rate. decay_steps(int): See the decay computation above. decay_rate(float): The decay rate. See the decay computation above. staircase(Boolean): If True, decay the learning rate at discrete intervals. Default: False Returns: Variable: The decayed learning rate Examples: .. code-block:: python base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.inverse_time_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) sgd_optimizer.minimize(avg_cost) """ with default_main_program()._lr_schedule_guard(): global_step = _decay_step_counter() div_res = global_step / decay_steps if staircase: div_res = ops.floor(div_res) decayed_lr = learning_rate / (1 + decay_rate * div_res) return decayed_lr def polynomial_decay(learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False): """ Applies polynomial decay to the initial learning rate. .. code-block:: python if cycle: decay_steps = decay_steps * ceil(global_step / decay_steps) else: global_step = min(global_step, decay_steps) decayed_learning_rate = (learning_rate - end_learning_rate) * (1 - global_step / decay_steps) ^ power + end_learning_rate Args: learning_rate(Variable|float32): A scalar float32 value or a Variable. This will be the initial learning rate during training. decay_steps(int32): A Python `int32` number. end_learning_rate(float): A Python `float` number. power(float): A Python `float` number. cycle(bool): If set true, decay the learning rate every decay_steps. Returns: Variable: The decayed learning rate """ with default_main_program()._lr_schedule_guard(): global_step = _decay_step_counter() if cycle: div_res = ops.ceil(global_step / decay_steps) zero_var = tensor.fill_constant( shape=[1], dtype='float32', value=0.0) one_var = tensor.fill_constant( shape=[1], dtype='float32', value=1.0) with control_flow.Switch() as switch: with switch.case(global_step == zero_var): tensor.assign(input=one_var, output=div_res) decay_steps = decay_steps * div_res else: decay_steps_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(decay_steps)) global_step = nn.elementwise_min(x=global_step, y=decay_steps_var) decayed_lr = (learning_rate - end_learning_rate) * \ ((1 - global_step / decay_steps) ** power) + end_learning_rate return decayed_lr def piecewise_decay(boundaries, values): """Applies piecewise decay to the initial learning rate. The algorithm can be described as the code below. .. code-block:: python boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] if step < 10000: learning_rate = 1.0 elif 10000 <= step < 20000: learning_rate = 0.5 else: learning_rate = 0.1 Args: boundaries: A list of steps numbers. values: A list of learning rate values that will be picked during different step boundaries. Returns: The decayed learning rate. """ with default_main_program()._lr_schedule_guard(): if len(values) - len(boundaries) != 1: raise ValueError("len(values) - len(boundaries) should be 1") global_step = _decay_step_counter() lr = tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") with control_flow.Switch() as switch: for i in range(len(boundaries)): boundary_val = tensor.fill_constant( shape=[1], dtype='float32', value=float(boundaries[i]), force_cpu=True) value_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(values[i])) with switch.case(global_step < boundary_val): tensor.assign(value_var, lr) last_value_var = tensor.fill_constant( shape=[1], dtype='float32', value=float(values[len(values) - 1])) with switch.default(): tensor.assign(last_value_var, lr) return lr def append_LARS(params_grads, learning_rate, weight_decay): """ Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for each layer. Args: learning_rate: A learning rate Variable. This is the global learning rate for LARS. weight_decay: A Python `float` number. Returns: The decayed learning rate Examples: .. code-block:: python learning_rate *= local_gw_ratio * sqrt(sumsq(param)) / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param))) """ def _balanced_weight(param_norm, grad_norm): if weight_decay == 1.0: return grad_norm + param_norm else: return grad_norm + weight_decay * param_norm for param, grad in params_grads: with param.block.program.optimized_guard( [param, grad]), name_scope("optimizer"): param_lr = param.optimize_attr['learning_rate'] param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param))) grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad))) if type(param_lr) == float and param_lr == 1.0: decayed_lr = learning_rate * param_norm \ / _balanced_weight(param_norm, grad_norm) else: decayed_lr = learning_rate * param_lr * param_norm \ / _balanced_weight(param_norm, grad_norm) # set back param local learning rate param.optimize_attr['learning_rate'] = decayed_lr