diff --git a/cmake/external/eigen.cmake b/cmake/external/eigen.cmake index bd853d921b4362ac7ac5e17e629552b2a200f08a..96fc886a342cae38d5b804266d3af7bc909a4da2 100644 --- a/cmake/external/eigen.cmake +++ b/cmake/external/eigen.cmake @@ -8,7 +8,7 @@ ExternalProject_Add( extern_eigen3 ${EXTERNAL_PROJECT_LOG_ARGS} GIT_REPOSITORY "https://github.com/RLovelett/eigen.git" - GIT_TAG 4e79cb69b9425f5f8c3a84be4350d4ab75b5fd9d + GIT_TAG 70661066beef694cadf6c304d0d07e0758825c10 PREFIX ${EIGEN_SOURCE_DIR} UPDATE_COMMAND "" CONFIGURE_COMMAND "" diff --git a/paddle/operators/batch_norm_op.cc b/paddle/operators/batch_norm_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..f7dc990f0db8ae4891ff068fb97899e6d01478da --- /dev/null +++ b/paddle/operators/batch_norm_op.cc @@ -0,0 +1,412 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/batch_norm_op.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenMatrix = framework::EigenMatrix; + +template +using EigenArrayMap = + Eigen::Map>; +template +using ConstEigenArrayMap = + Eigen::Map>; +template +using EigenVectorArrayMap = Eigen::Map>; +template +using ConstEigenVectorArrayMap = + Eigen::Map>; + +class BatchNormOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), ""); + PADDLE_ENFORCE(ctx->HasInput("Scale"), ""); + PADDLE_ENFORCE(ctx->HasInput("Bias"), ""); + PADDLE_ENFORCE(ctx->HasInput("Mean"), ""); + PADDLE_ENFORCE(ctx->HasInput("Variance"), ""); + PADDLE_ENFORCE(ctx->HasOutput("Y"), ""); + PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), ""); + PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), ""); + PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), ""); + PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), ""); + + // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python + PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0], + "Mean and MeanOut should share the same memory"); + PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0], + ctx->Outputs("VarianceOut")[0], + "Variance and VarianceOut should share the same memory"); + + const auto x_dims = ctx->GetInputDim("X"); + const TensorFormat tensor_format = + StringToTensorFormat(ctx->Attrs().Get("tensor_format")); + const int C = + (tensor_format == TensorFormat::NCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); + + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C); + + ctx->SetOutputDim("Y", x_dims); + ctx->SetOutputDim("MeanOut", {C}); + ctx->SetOutputDim("VarianceOut", {C}); + ctx->SetOutputDim("SavedMean", {C}); + ctx->SetOutputDim("SavedVariance", {C}); + } +}; + +class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { + public: + BatchNormOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddAttr("is_test", "").SetDefault(false); + AddAttr("momentum", "").SetDefault(0.9); + AddAttr("epsilon", "").SetDefault(1e-5); + AddAttr("tensor_format", "").SetDefault("NCHW"); + AddInput("X", "The input tensor"); + AddInput("Scale", + "Scale is a 1-dimensional tensor of size C " + "to be applied to the output"); + AddInput("Bias", + "Bias is a 1-dimensional tensor of size C " + "to be applied to the output"); + AddInput("Mean", + "The global mean (for training) or the " + "estimated mean (for testing)"); + AddInput("Variance", + "The global variance (for training) " + "or the estimated Variance (for testing)"); + AddOutput("Y", "result after normalization"); + AddOutput("MeanOut", + "Share memory with Mean. " + "Store the global mean when training"); + AddOutput("VarianceOut", + "Share memory with Variance. " + "Store the global Variance when training"); + AddOutput("SavedMean", + "Mean of the current mini batch, " + "will apply to output when training"); + AddOutput("SavedVariance", + "Variance of the current mini batch, " + "will apply to output when training"); + AddComment(R"DOC( +https://arxiv.org/pdf/1502.03167.pdf + +NHWC `[batch, in_height, in_width, in_channels]` +NCHW `[batch, in_channels, in_height, in_width]` + +)DOC"); + } +}; + +template +class BatchNormKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + const float epsilon = ctx.Attr("epsilon"); + const float momentum = ctx.Attr("momentum"); + const bool is_test = ctx.Attr("is_test"); + const std::string tensor_format_str = + ctx.Attr("tensor_format"); + const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + + const auto *x = ctx.Input("X"); + const auto &x_dims = x->dims(); + + PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5, + "The Input dim size should be between 3 and 5"); + const int N = x_dims[0]; + const int C = + (tensor_format == TensorFormat::NCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); + const int sample_size = x->numel() / N / C; + + auto *y = ctx.Output("Y"); + auto *mean_out = ctx.Output("MeanOut"); + auto *variance_out = ctx.Output("VarianceOut"); + auto *saved_mean = ctx.Output("SavedMean"); + auto *saved_variance = ctx.Output("SavedVariance"); + + // alloc memory + y->mutable_data(ctx.GetPlace()); + mean_out->mutable_data(ctx.GetPlace()); + variance_out->mutable_data(ctx.GetPlace()); + saved_mean->mutable_data(ctx.GetPlace()); + saved_variance->mutable_data(ctx.GetPlace()); + + if (!is_test) { + // saved_xx is use just in this batch of data + EigenVectorArrayMap saved_mean_e( + saved_mean->mutable_data(ctx.GetPlace()), C); + EigenVectorArrayMap saved_variance_e( + saved_variance->mutable_data(ctx.GetPlace()), C); + saved_mean_e.setZero(); + saved_variance_e.setZero(); + + switch (tensor_format) { + case TensorFormat::NCHW: { + ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); + for (int nc = 0; nc < N * C; ++nc) { + saved_mean_e(nc % C) += x_arr.col(nc).sum(); + } + saved_mean_e /= N * sample_size; + for (int nc = 0; nc < N * C; ++nc) { + saved_variance_e(nc % C) += + (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm(); + } + saved_variance_e /= N * sample_size; + break; + } + case TensorFormat::NHWC: { + ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); + for (int i = 0; i < N * sample_size; ++i) { + saved_mean_e += x_arr.col(i); + } + saved_mean_e /= N * sample_size; + for (int i = 0; i < N * sample_size; ++i) { + saved_variance_e += + (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e); + } + saved_variance_e /= N * sample_size; + break; + } + default: + PADDLE_THROW("Unknown storage order: %s", tensor_format_str); + } + + EigenVectorArrayMap running_mean_arr( + mean_out->mutable_data(ctx.GetPlace()), C); + EigenVectorArrayMap running_var_arr( + variance_out->mutable_data(ctx.GetPlace()), C); + running_mean_arr = + running_mean_arr * momentum + saved_mean_e * (1. - momentum); + running_var_arr = + running_var_arr * momentum + saved_variance_e * (1. - momentum); + } + + // use SavedMean and SavedVariance to do normalize + Eigen::Array inv_std(C); + if (is_test) { + ConstEigenVectorArrayMap var_arr( + ctx.Input("Variance")->data(), C); + inv_std = (var_arr + epsilon).sqrt().inverse(); + } else { + EigenVectorArrayMap saved_inv_std( + ctx.Output("SavedVariance")->data(), C); + // inverse SavedVariance first, gradient will use it too. + saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt(); + inv_std = saved_inv_std; + } + ConstEigenVectorArrayMap mean_arr( + is_test ? ctx.Input("Mean")->data() + : ctx.Output("SavedMean")->data(), + C); + + // ((x - est_mean) * (inv_var) * scale + bias + // formula transform ====> + // (x * inv_var * scale) + (bias - est_mean * inv_var * scale) + const auto *scale = ctx.Input("Scale"); + const auto *bias = ctx.Input("Bias"); + ConstEigenVectorArrayMap scale_arr(scale->data(), C); + ConstEigenVectorArrayMap bias_arr(bias->data(), C); + Eigen::Array new_scale = inv_std * scale_arr; + Eigen::Array new_bias = + bias_arr - mean_arr * inv_std * scale_arr; + + switch (tensor_format) { + case TensorFormat::NCHW: { + EigenArrayMap y_arr(y->mutable_data(ctx.GetPlace()), sample_size, + N * C); + ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); + for (int nc = 0; nc < N * C; ++nc) { + y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C); + } + break; + } + case TensorFormat::NHWC: { + EigenArrayMap(y->mutable_data(ctx.GetPlace()), C, + N * sample_size) = + (ConstEigenArrayMap(x->data(), C, N * sample_size).colwise() * + new_scale) + .colwise() + + new_bias; + break; + } + default: + PADDLE_THROW("Unknown storage order: %d", tensor_format); + } + } +}; + +class BatchNormGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + // check input + PADDLE_ENFORCE(ctx->HasInput("X")); + PADDLE_ENFORCE(ctx->HasInput("Scale"), ""); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), ""); + PADDLE_ENFORCE(ctx->HasInput("SavedMean"), ""); + PADDLE_ENFORCE(ctx->HasInput("SavedVariance"), ""); + + // check output + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), ""); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Scale")), ""); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), ""); + + const auto x_dims = ctx->GetInputDim("X"); + const TensorFormat tensor_format = + StringToTensorFormat(ctx->Attrs().Get("tensor_format")); + const int C = + (tensor_format == TensorFormat::NCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); + + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + ctx->SetOutputDim(framework::GradVarName("Scale"), {C}); + ctx->SetOutputDim(framework::GradVarName("Bias"), {C}); + } +}; + +template +class BatchNormGradKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + const auto *x = ctx.Input("X"); + const auto *d_y = ctx.Input(framework::GradVarName("Y")); + const auto *scale = ctx.Input("Scale"); + const auto *saved_mean = ctx.Input("SavedMean"); + // SavedVariance have been reverted in forward operator + const auto *saved_inv_variance = ctx.Input("SavedVariance"); + const std::string tensor_format_str = + ctx.Attr("tensor_format"); + const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + + // Get the size for each dimension. + // NCHW [batch_size, in_channels, in_height, in_width] + const auto &x_dims = x->dims(); + PADDLE_ENFORCE(x_dims.size() >= 3 && x_dims.size() <= 5, + "The Input dim size should be between 3 and 5"); + const int N = x_dims[0]; + const int C = + (tensor_format == TensorFormat::NCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); + const int sample_size = x->numel() / N / C; + + ConstEigenVectorArrayMap scale_arr(scale->data(), C); + ConstEigenVectorArrayMap mean_arr(saved_mean->data(), C); + ConstEigenVectorArrayMap inv_var_arr(saved_inv_variance->data(), C); + + // init output + auto *d_x = ctx.Output(framework::GradVarName("X")); + auto *d_scale = ctx.Output(framework::GradVarName("Scale")); + auto *d_bias = ctx.Output(framework::GradVarName("Bias")); + + d_x->mutable_data(ctx.GetPlace()); + d_scale->mutable_data(ctx.GetPlace()); + d_bias->mutable_data(ctx.GetPlace()); + + // d_bias = np.sum(d_y, axis=0) + // d_scale = np.sum((X - mean) / inv_std * dy, axis=0) + // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0) + // - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0)) + + EigenVectorArrayMap d_bias_arr(d_bias->mutable_data(ctx.GetPlace()), + C); + EigenVectorArrayMap d_scale_arr(d_scale->mutable_data(ctx.GetPlace()), + C); + + d_bias_arr.setZero(); + d_scale_arr.setZero(); + + const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size); + + switch (tensor_format) { + case TensorFormat::NCHW: { + ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); + ConstEigenArrayMap d_y_arr(d_y->data(), sample_size, N * C); + EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), + sample_size, N * C); + d_x_arr.setZero(); + + for (int nc = 0; nc < N * C; ++nc) { + int c = nc % C; + d_bias_arr(c) += d_y_arr.col(nc).sum(); + d_scale_arr(c) += + ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc)) + .sum(); + } + for (int nc = 0; nc < N * C; ++nc) { + int c = nc % C; + d_x_arr.col(nc) += + scale_inv_var_nhw(c) * + (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) - + (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) * inv_var_arr(c)); + } + break; + } + case TensorFormat::NHWC: { + ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); + ConstEigenArrayMap d_y_arr(d_y->data(), C, N * sample_size); + EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), C, + N * sample_size); + d_x_arr.setZero(); + + const auto d_y_row_sum = d_y_arr.rowwise().sum(); + const auto x_minus_mean = x_arr.colwise() - mean_arr; + const auto d_y_mul_x_minus_mean_row_sum = + (d_y_arr * x_minus_mean).rowwise().sum(); + const auto inv_var_sqr = inv_var_arr * inv_var_arr; + for (int nhw = 0; nhw < N * sample_size; ++nhw) { + d_bias_arr += d_y_arr.col(nhw); + d_scale_arr += + (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw); + d_x_arr.col(nhw) += + scale_inv_var_nhw * + (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum - + x_minus_mean.col(nhw) * inv_var_sqr * + d_y_mul_x_minus_mean_row_sum); + } + break; + } + default: + PADDLE_THROW("Unknown storage order: %s", tensor_format_str); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker, + batch_norm_grad, ops::BatchNormGradOp); +REGISTER_OP_CPU_KERNEL(batch_norm, + ops::BatchNormKernel); +REGISTER_OP_CPU_KERNEL( + batch_norm_grad, + ops::BatchNormGradKernel); diff --git a/paddle/operators/batch_norm_op.h b/paddle/operators/batch_norm_op.h new file mode 100644 index 0000000000000000000000000000000000000000..4e80134a1acf3b4d66154453dd0ed709133d1c7c --- /dev/null +++ b/paddle/operators/batch_norm_op.h @@ -0,0 +1,50 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +enum TensorFormat { + NHWC = 0, + NCHW = 1, +}; + +inline TensorFormat StringToTensorFormat(const std::string& str) { + if (str == "NHWC" || str == "nhwc") { + return TensorFormat::NHWC; + } else if (str == "NCHW" || str == "nchw") { + return TensorFormat::NCHW; + } else { + PADDLE_THROW("Unknown storage order string: %s", str); + } +} + +template +class BatchNormKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override; +}; + +template +class BatchNormGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override; +}; + +} // namespace operators +} // namespace paddle diff --git a/python/paddle/v2/framework/tests/op_test.py b/python/paddle/v2/framework/tests/op_test.py index 0f8c61a2ab5a9d046f80c5ead89e0e4e8f7422ce..a7de01dcddd65b6f0f064e6ce6fcb3e5cad73931 100644 --- a/python/paddle/v2/framework/tests/op_test.py +++ b/python/paddle/v2/framework/tests/op_test.py @@ -390,7 +390,8 @@ class OpTest(unittest.TestCase): output_names, no_grad_set=None, in_place=False, - max_relative_error=0.005): + max_relative_error=0.005, + user_defined_grads=None): self.scope = core.Scope() op_inputs = self.inputs if hasattr(self, "inputs") else dict() op_outputs = self.outputs if hasattr(self, "outputs") else dict() @@ -403,7 +404,7 @@ class OpTest(unittest.TestCase): if not type(output_names) is list: output_names = [output_names] - numeric_grads = [ + numeric_grads = user_defined_grads or [ get_numeric_gradient( self.scope, self.op, diff --git a/python/paddle/v2/framework/tests/test_batch_norm_op.py b/python/paddle/v2/framework/tests/test_batch_norm_op.py new file mode 100644 index 0000000000000000000000000000000000000000..b7b071c24da59c048f221a8130d9c2b8ad674911 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_batch_norm_op.py @@ -0,0 +1,197 @@ +import unittest +import numpy as np +from op_test import OpTest, get_backward_op, grad_var_name +import paddle.v2.framework.core as core +from paddle.v2.framework.op import Operator + + +def _reference_training(x, scale, offset, epsilon, data_format): + if data_format != "NHWC": + raise ValueError("data_format must be NHWC, got %s." % data_format) + x_square = x * x + x_square_sum = np.sum(x_square, (0, 1, 2)) + x_sum = np.sum(x, axis=(0, 1, 2)) + element_count = np.size(x) / int(np.shape(x)[-1]) + mean = x_sum / element_count + var = x_square_sum / element_count - mean * mean + normalized = (x - mean) / np.sqrt(var + epsilon) + return (normalized * scale + offset), mean, var + + +def _reference_grad(x, grad_y, scale, mean, var, epsilon, data_format): + # Use the following formulas to calculate gradients: + # grad_scale = + # sum(grad_y * (x - mean)) * rsqrt(var + epsilon) + # + # grad_offset = sum(output_y) + # + # grad_x = + # 1/N * scale * rsqrt(var + epsilon) * (N * grad_y - sum(grad_y) - + # (x - mean) * sum(grad_y * (x - mean)) / (var + epsilon)) + if data_format != "NHWC": + raise ValueError("data_format must be NHWC, got %s." % data_format) + grad_x = scale * (grad_y - np.mean( + grad_y, axis=(0, 1, 2)) - (x - mean) * np.mean( + grad_y * (x - mean), axis=(0, 1, 2)) / + (var + epsilon)) / np.sqrt(var + epsilon) + grad_scale = np.sum(grad_y * (x - mean) / np.sqrt(var + epsilon), + axis=(0, 1, 2)) + grad_offset = np.sum(grad_y, axis=(0, 1, 2)) + return grad_x, grad_scale, grad_offset + + +def create_or_get_tensor(scope, var_name, var, place): + tensor = scope.var(var_name).get_tensor() + if var is not None: + assert isinstance(var, np.ndarray) + tensor.set_lod([[]]) + tensor.set_dims(var.shape) + tensor.set(var, place) + return tensor + + +def set_output_grad(scope, outputs, place): + def __set_tensor__(name): + out_tensor = scope.find_var(name).get_tensor() + grad_tensor = scope.var(grad_var_name(name)).get_tensor() + out_dtype = out_tensor.dtype() + if out_dtype == core.DataType.FP64: + data = np.ones(out_tensor.shape(), dtype=np.float64) + elif out_dtype == core.DataType.FP32: + data = np.ones(out_tensor.shape(), dtype=np.float32) + else: + raise ValueError("Not supported data type " + str(out_dtype)) + + grad_tensor.set(data, place) + + for output in outputs: + __set_tensor__(output) + + +class TestBatchNormOp(OpTest): + def __assert_close(self, tensor, np_array, msg, atol=1e-4): + self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg) + + def test_forward_backward(self): + # attr + data_format = "NHWC" + epsilon = 0.00001 + momentum = 0.9 + + channel_num = 2 + x_shape = [2, 3, 4, channel_num] + scale_shape = [channel_num] + + # input + x_val = np.random.random_sample(x_shape).astype(np.float32) + scale_val = np.random.random_sample(scale_shape).astype(np.float32) + bias_val = np.random.random_sample(scale_shape).astype(np.float32) + + mean = np.zeros(scale_shape).astype(np.float32) + variance = np.zeros(scale_shape).astype(np.float32) + + # run forward + y_out, saved_mean, var_ref = _reference_training( + x_val, scale_val, bias_val, epsilon, data_format) + + # run backward + mean_out = saved_mean * (1 - momentum) + variance_out = var_ref * (1 - momentum) + saved_variance = 1 / np.sqrt(var_ref + epsilon) + + # for gradient test + y_grad = np.ones(x_shape).astype(np.float32) + x_grad_ref, scale_grad_ref, bias_grad_ref = _reference_grad( + x_val, y_grad, scale_val, saved_mean, var_ref, epsilon, data_format) + + def test_with_place(place): + scope = core.Scope() + + # create input + x_tensor = create_or_get_tensor(scope, "x_val", x_val, place) + scale_tensor = create_or_get_tensor(scope, "scale_val", scale_val, + place) + bias_tensor = create_or_get_tensor(scope, "bias_val", bias_val, + place) + mean_tensor = create_or_get_tensor(scope, "mean", mean, place) + variance_tensor = create_or_get_tensor(scope, "variance", variance, + place) + + # create output + y_tensor = create_or_get_tensor(scope, "y_out", None, place) + saved_mean_tensor = create_or_get_tensor(scope, "saved_mean", None, + place) + saved_variance_tensor = create_or_get_tensor( + scope, "saved_variance", None, place) + mean_out_tensor = mean_tensor + variance_out_tensor = variance_tensor + + batch_norm_op = Operator( + "batch_norm", + # inputs + X="x_val", + Scale="scale_val", + Bias="bias_val", + Mean="mean", + Variance="variance", + # outputs + Y="y_out", + MeanOut="mean", + VarianceOut="variance", + SavedMean="saved_mean", + SavedVariance="saved_variance", + # attrs + is_test=False, + tensor_format=data_format, + momentum=momentum, + epsilon=epsilon) + + ctx = core.DeviceContext.create(place) + batch_norm_op.run(scope, ctx) + + # check forward result + self.__assert_close(y_tensor, y_out, "y_out") + self.__assert_close(saved_mean_tensor, saved_mean, "saved_mean") + self.__assert_close(saved_variance_tensor, saved_variance, + "saved_variance") + self.__assert_close(mean_out_tensor, mean_out, "mean_out") + # FIXME(qiao) figure out why with cuDNN variance_out have a higher error rate + if isinstance(place, core.GPUPlace): + atol = 5e-2 + else: + atol = 1e-4 + self.__assert_close(variance_out_tensor, variance_out, + "variance_out", atol) + + # run backward + batch_norm_op_grad = get_backward_op(scope, batch_norm_op, set()) + set_output_grad( + scope, + ["y_out", "mean", "variance", "saved_mean", "saved_variance"], + place) + batch_norm_op_grad.run(scope, ctx) + + x_grad_tensor = create_or_get_tensor(scope, + grad_var_name("x_val"), None, + place) + scale_grad_tensor = create_or_get_tensor(scope, + grad_var_name("scale_val"), + None, place) + bias_grad_tensor = create_or_get_tensor(scope, + grad_var_name("bias_val"), + None, place) + + # check gradient output + self.__assert_close(x_grad_tensor, x_grad_ref, "x_grad") + self.__assert_close(scale_grad_tensor, scale_grad_ref, "scale_grad") + self.__assert_close(bias_grad_tensor, bias_grad_ref, "bias_grad") + + places = [core.CPUPlace()] + if core.is_compile_gpu() and core.op_support_gpu("batch_norm"): + places.append(core.GPUPlace(0)) + for place in places: + test_with_place(place) + + +if __name__ == '__main__': + unittest.main()