提交 1e6bf867 编写于 作者: P prife

format dfs_elm.c with astyle

上级 5646189b
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
* 2012-07-26 aozima implement ff_memalloc and ff_memfree. * 2012-07-26 aozima implement ff_memalloc and ff_memfree.
* 2012-12-19 Bernard fixed the O_APPEND and lseek issue. * 2012-12-19 Bernard fixed the O_APPEND and lseek issue.
*/ */
#include <rtthread.h> #include <rtthread.h>
#include "ffconf.h" #include "ffconf.h"
#include "ff.h" #include "ff.h"
...@@ -30,142 +30,142 @@ static rt_device_t disk[_VOLUMES] = {0}; ...@@ -30,142 +30,142 @@ static rt_device_t disk[_VOLUMES] = {0};
static int elm_result_to_dfs(FRESULT result) static int elm_result_to_dfs(FRESULT result)
{ {
int status = DFS_STATUS_OK; int status = DFS_STATUS_OK;
switch (result) switch (result)
{ {
case FR_OK: case FR_OK:
break; break;
case FR_NO_FILE: case FR_NO_FILE:
case FR_NO_PATH: case FR_NO_PATH:
case FR_NO_FILESYSTEM: case FR_NO_FILESYSTEM:
status = -DFS_STATUS_ENOENT; status = -DFS_STATUS_ENOENT;
break; break;
case FR_INVALID_NAME: case FR_INVALID_NAME:
status = -DFS_STATUS_EINVAL; status = -DFS_STATUS_EINVAL;
break; break;
case FR_EXIST: case FR_EXIST:
case FR_INVALID_OBJECT: case FR_INVALID_OBJECT:
status = -DFS_STATUS_EEXIST; status = -DFS_STATUS_EEXIST;
break; break;
case FR_DISK_ERR: case FR_DISK_ERR:
case FR_NOT_READY: case FR_NOT_READY:
case FR_INT_ERR: case FR_INT_ERR:
status = -DFS_STATUS_EIO; status = -DFS_STATUS_EIO;
break; break;
case FR_WRITE_PROTECTED: case FR_WRITE_PROTECTED:
case FR_DENIED: case FR_DENIED:
status = -DFS_STATUS_EROFS; status = -DFS_STATUS_EROFS;
break; break;
case FR_MKFS_ABORTED: case FR_MKFS_ABORTED:
status = -DFS_STATUS_EINVAL; status = -DFS_STATUS_EINVAL;
break; break;
default: default:
status = -1; status = -1;
break; break;
} }
return status; return status;
} }
/* results: /* results:
* -1, no space to install fatfs driver * -1, no space to install fatfs driver
* >= 0, there is an space to install fatfs driver * >= 0, there is an space to install fatfs driver
*/ */
static int get_disk(rt_device_t id) static int get_disk(rt_device_t id)
{ {
int index; int index;
for (index = 0; index < _VOLUMES; index ++) for (index = 0; index < _VOLUMES; index ++)
{ {
if (disk[index] == id) if (disk[index] == id)
return index; return index;
} }
return -1; return -1;
} }
int dfs_elm_mount(struct dfs_filesystem *fs, unsigned long rwflag, const void *data) int dfs_elm_mount(struct dfs_filesystem *fs, unsigned long rwflag, const void *data)
{ {
FATFS *fat; FATFS *fat;
FRESULT result; FRESULT result;
int index; int index;
/* get an empty position */ /* get an empty position */
index = get_disk(RT_NULL); index = get_disk(RT_NULL);
if (index == -1) if (index == -1)
return -DFS_STATUS_ENOSPC; return -DFS_STATUS_ENOSPC;
/* save device */ /* save device */
disk[index] = fs->dev_id; disk[index] = fs->dev_id;
fat = (FATFS *)rt_malloc(sizeof(FATFS)); fat = (FATFS *)rt_malloc(sizeof(FATFS));
if (fat == RT_NULL) if (fat == RT_NULL)
{ {
disk[index] = RT_NULL; disk[index] = RT_NULL;
return -1; return -1;
} }
/* mount fatfs, always 0 logic driver */ /* mount fatfs, always 0 logic driver */
result = f_mount((BYTE)index, fat); result = f_mount((BYTE)index, fat);
if (result == FR_OK) if (result == FR_OK)
{ {
char drive[8]; char drive[8];
DIR * dir; DIR *dir;
rt_snprintf(drive, sizeof(drive), "%d:/", index); rt_snprintf(drive, sizeof(drive), "%d:/", index);
dir = (DIR *)rt_malloc(sizeof(DIR)); dir = (DIR *)rt_malloc(sizeof(DIR));
if (dir == RT_NULL) if (dir == RT_NULL)
return -DFS_STATUS_ENOMEM; return -DFS_STATUS_ENOMEM;
/* open the root directory to test whether the fatfs is valid */ /* open the root directory to test whether the fatfs is valid */
result = f_opendir(dir, drive); result = f_opendir(dir, drive);
if (result != FR_OK) if (result != FR_OK)
goto __err; goto __err;
/* mount succeed! */ /* mount succeed! */
fs->data = fat; fs->data = fat;
rt_free(dir); rt_free(dir);
return 0; return 0;
} }
__err: __err:
disk[index] = RT_NULL; disk[index] = RT_NULL;
rt_free(fat); rt_free(fat);
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
int dfs_elm_unmount(struct dfs_filesystem *fs) int dfs_elm_unmount(struct dfs_filesystem *fs)
{ {
FATFS *fat; FATFS *fat;
FRESULT result; FRESULT result;
int index; int index;
fat = (FATFS *)fs->data; fat = (FATFS *)fs->data;
RT_ASSERT(fat != RT_NULL); RT_ASSERT(fat != RT_NULL);
/* find the device index and then umount it */ /* find the device index and then umount it */
index = get_disk(fs->dev_id); index = get_disk(fs->dev_id);
if (index == -1) /* not found */ if (index == -1) /* not found */
return -DFS_STATUS_ENOENT; return -DFS_STATUS_ENOENT;
result = f_mount((BYTE)index, RT_NULL); result = f_mount((BYTE)index, RT_NULL);
if (result != FR_OK) if (result != FR_OK)
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
fs->data = RT_NULL; fs->data = RT_NULL;
disk[index] = RT_NULL; disk[index] = RT_NULL;
rt_free(fat); rt_free(fat);
return DFS_STATUS_OK; return DFS_STATUS_OK;
} }
int dfs_elm_mkfs(rt_device_t dev_id) int dfs_elm_mkfs(rt_device_t dev_id)
...@@ -174,13 +174,13 @@ int dfs_elm_mkfs(rt_device_t dev_id) ...@@ -174,13 +174,13 @@ int dfs_elm_mkfs(rt_device_t dev_id)
#define FSM_STATUS_USE_TEMP_DRIVER 1 #define FSM_STATUS_USE_TEMP_DRIVER 1
FATFS *fat; FATFS *fat;
int flag; int flag;
FRESULT result; FRESULT result;
int index; int index;
if (dev_id == RT_NULL) if (dev_id == RT_NULL)
return -DFS_STATUS_EINVAL; return -DFS_STATUS_EINVAL;
/* if the device is already mounted, then just do mkfs to the drv, /* if the device is already mounted, then just do mkfs to the drv,
* while if it is not mounted yet, then find an empty drive to do mkfs * while if it is not mounted yet, then find an empty drive to do mkfs
*/ */
...@@ -190,11 +190,11 @@ int dfs_elm_mkfs(rt_device_t dev_id) ...@@ -190,11 +190,11 @@ int dfs_elm_mkfs(rt_device_t dev_id)
{ {
/* not found the device id */ /* not found the device id */
index = get_disk(RT_NULL); index = get_disk(RT_NULL);
if (index == -1) if (index == -1)
{ {
/* no space to store an temp driver */ /* no space to store an temp driver */
rt_kprintf("sorry, there is no space to do mkfs! \n"); rt_kprintf("sorry, there is no space to do mkfs! \n");
return -DFS_STATUS_ENOSPC; return -DFS_STATUS_ENOSPC;
} }
else else
{ {
...@@ -206,19 +206,19 @@ int dfs_elm_mkfs(rt_device_t dev_id) ...@@ -206,19 +206,19 @@ int dfs_elm_mkfs(rt_device_t dev_id)
disk[index] = dev_id; disk[index] = dev_id;
/* just fill the FatFs[vol] in ff.c, or mkfs will failded! /* just fill the FatFs[vol] in ff.c, or mkfs will failded!
* consider this condition: you just umount the elm fat, * consider this condition: you just umount the elm fat,
* then the space in FatFs[index] is released, and now do mkfs * then the space in FatFs[index] is released, and now do mkfs
* on the disk, you will get a failure. so we need f_mount here, * on the disk, you will get a failure. so we need f_mount here,
* just fill the FatFS[index] in elm fatfs to make mkfs work. * just fill the FatFS[index] in elm fatfs to make mkfs work.
*/ */
f_mount((BYTE)index, fat); f_mount((BYTE)index, fat);
} }
} }
/* 1: no partition table */ /* 1: no partition table */
/* 0: auto selection of cluster size */ /* 0: auto selection of cluster size */
result = f_mkfs((BYTE)index, 1, 0); result = f_mkfs((BYTE)index, 1, 0);
/* check flag status, we need clear the temp driver stored in disk[] */ /* check flag status, we need clear the temp driver stored in disk[] */
if (flag == FSM_STATUS_USE_TEMP_DRIVER) if (flag == FSM_STATUS_USE_TEMP_DRIVER)
...@@ -228,513 +228,513 @@ int dfs_elm_mkfs(rt_device_t dev_id) ...@@ -228,513 +228,513 @@ int dfs_elm_mkfs(rt_device_t dev_id)
disk[index] = RT_NULL; disk[index] = RT_NULL;
} }
if (result != FR_OK) if (result != FR_OK)
{ {
rt_kprintf("format error\n"); rt_kprintf("format error\n");
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
return DFS_STATUS_OK; return DFS_STATUS_OK;
} }
int dfs_elm_statfs(struct dfs_filesystem *fs, struct statfs *buf) int dfs_elm_statfs(struct dfs_filesystem *fs, struct statfs *buf)
{ {
FATFS *f; FATFS *f;
FRESULT res; FRESULT res;
char driver[4]; char driver[4];
DWORD fre_clust, fre_sect, tot_sect; DWORD fre_clust, fre_sect, tot_sect;
RT_ASSERT(fs != RT_NULL); RT_ASSERT(fs != RT_NULL);
RT_ASSERT(buf != RT_NULL); RT_ASSERT(buf != RT_NULL);
f = (FATFS *)fs->data; f = (FATFS *)fs->data;
rt_snprintf(driver, sizeof(driver), "%d:", f->drv); rt_snprintf(driver, sizeof(driver), "%d:", f->drv);
res = f_getfree(driver, &fre_clust, &f); res = f_getfree(driver, &fre_clust, &f);
if (res) if (res)
return elm_result_to_dfs(res); return elm_result_to_dfs(res);
/* Get total sectors and free sectors */ /* Get total sectors and free sectors */
tot_sect = (f->n_fatent - 2) * f->csize; tot_sect = (f->n_fatent - 2) * f->csize;
fre_sect = fre_clust * f->csize; fre_sect = fre_clust * f->csize;
buf->f_bfree = fre_sect; buf->f_bfree = fre_sect;
buf->f_blocks = tot_sect; buf->f_blocks = tot_sect;
#if _MAX_SS != 512 #if _MAX_SS != 512
buf->f_bsize = f->ssize; buf->f_bsize = f->ssize;
#else #else
buf->f_bsize = 512; buf->f_bsize = 512;
#endif #endif
return 0; return 0;
} }
int dfs_elm_open(struct dfs_fd *file) int dfs_elm_open(struct dfs_fd *file)
{ {
FIL *fd; FIL *fd;
BYTE mode; BYTE mode;
FRESULT result; FRESULT result;
char *drivers_fn; char *drivers_fn;
#if (_VOLUMES > 1) #if (_VOLUMES > 1)
int vol; int vol;
extern int elm_get_vol(FATFS *fat); extern int elm_get_vol(FATFS * fat);
/* add path for ELM FatFS driver support */ /* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)file->fs->data); vol = elm_get_vol((FATFS *)file->fs->data);
if (vol < 0) if (vol < 0)
return -DFS_STATUS_ENOENT; return -DFS_STATUS_ENOENT;
drivers_fn = rt_malloc(256); drivers_fn = rt_malloc(256);
if (drivers_fn == RT_NULL) if (drivers_fn == RT_NULL)
return -DFS_STATUS_ENOMEM; return -DFS_STATUS_ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->path); rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->path);
#else #else
drivers_fn = file->path; drivers_fn = file->path;
#endif #endif
if (file->flags & DFS_O_DIRECTORY) if (file->flags & DFS_O_DIRECTORY)
{ {
DIR *dir; DIR *dir;
if (file->flags & DFS_O_CREAT) if (file->flags & DFS_O_CREAT)
{ {
result = f_mkdir(drivers_fn); result = f_mkdir(drivers_fn);
if (result != FR_OK) if (result != FR_OK)
{ {
#if _VOLUMES > 1 #if _VOLUMES > 1
rt_free(drivers_fn); rt_free(drivers_fn);
#endif #endif
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
} }
/* open directory */ /* open directory */
dir = (DIR *)rt_malloc(sizeof(DIR)); dir = (DIR *)rt_malloc(sizeof(DIR));
if (dir == RT_NULL) if (dir == RT_NULL)
{ {
#if _VOLUMES > 1 #if _VOLUMES > 1
rt_free(drivers_fn); rt_free(drivers_fn);
#endif #endif
return -DFS_STATUS_ENOMEM; return -DFS_STATUS_ENOMEM;
} }
result = f_opendir(dir, drivers_fn); result = f_opendir(dir, drivers_fn);
#if _VOLUMES > 1 #if _VOLUMES > 1
rt_free(drivers_fn); rt_free(drivers_fn);
#endif #endif
if (result != FR_OK) if (result != FR_OK)
{ {
rt_free(dir); rt_free(dir);
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
file->data = dir; file->data = dir;
return DFS_STATUS_OK; return DFS_STATUS_OK;
} }
else else
{ {
mode = FA_READ; mode = FA_READ;
if (file->flags & DFS_O_WRONLY) if (file->flags & DFS_O_WRONLY)
mode |= FA_WRITE; mode |= FA_WRITE;
if ((file->flags & DFS_O_ACCMODE) & DFS_O_RDWR) if ((file->flags & DFS_O_ACCMODE) & DFS_O_RDWR)
mode |= FA_WRITE; mode |= FA_WRITE;
/* Opens the file, if it is existing. If not, a new file is created. */ /* Opens the file, if it is existing. If not, a new file is created. */
if (file->flags & DFS_O_CREAT) if (file->flags & DFS_O_CREAT)
mode |= FA_OPEN_ALWAYS; mode |= FA_OPEN_ALWAYS;
/* Creates a new file. If the file is existing, it is truncated and overwritten. */ /* Creates a new file. If the file is existing, it is truncated and overwritten. */
if (file->flags & DFS_O_TRUNC) if (file->flags & DFS_O_TRUNC)
mode |= FA_CREATE_ALWAYS; mode |= FA_CREATE_ALWAYS;
/* Creates a new file. The function fails if the file is already existing. */ /* Creates a new file. The function fails if the file is already existing. */
if (file->flags & DFS_O_EXCL) if (file->flags & DFS_O_EXCL)
mode |= FA_CREATE_NEW; mode |= FA_CREATE_NEW;
/* allocate a fd */ /* allocate a fd */
fd = (FIL *)rt_malloc(sizeof(FIL)); fd = (FIL *)rt_malloc(sizeof(FIL));
if (fd == RT_NULL) if (fd == RT_NULL)
{ {
#if _VOLUMES > 1 #if _VOLUMES > 1
rt_free(drivers_fn); rt_free(drivers_fn);
#endif #endif
return -DFS_STATUS_ENOMEM; return -DFS_STATUS_ENOMEM;
} }
result = f_open(fd, drivers_fn, mode); result = f_open(fd, drivers_fn, mode);
#if _VOLUMES > 1 #if _VOLUMES > 1
rt_free(drivers_fn); rt_free(drivers_fn);
#endif #endif
if (result == FR_OK) if (result == FR_OK)
{ {
file->pos = fd->fptr; file->pos = fd->fptr;
file->size = fd->fsize; file->size = fd->fsize;
file->data = fd; file->data = fd;
if (file->flags & DFS_O_APPEND) if (file->flags & DFS_O_APPEND)
{ {
/* seek to the end of file */ /* seek to the end of file */
f_lseek(fd, fd->fsize); f_lseek(fd, fd->fsize);
file->pos = fd->fptr; file->pos = fd->fptr;
} }
} }
else else
{ {
/* open failed, return */ /* open failed, return */
rt_free(fd); rt_free(fd);
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
} }
return DFS_STATUS_OK; return DFS_STATUS_OK;
} }
int dfs_elm_close(struct dfs_fd *file) int dfs_elm_close(struct dfs_fd *file)
{ {
FRESULT result; FRESULT result;
result = FR_OK; result = FR_OK;
if (file->type == FT_DIRECTORY) if (file->type == FT_DIRECTORY)
{ {
DIR *dir; DIR *dir;
dir = (DIR *)(file->data); dir = (DIR *)(file->data);
RT_ASSERT(dir != RT_NULL); RT_ASSERT(dir != RT_NULL);
/* release memory */ /* release memory */
rt_free(dir); rt_free(dir);
} }
else if (file->type == FT_REGULAR) else if (file->type == FT_REGULAR)
{ {
FIL *fd; FIL *fd;
fd = (FIL *)(file->data); fd = (FIL *)(file->data);
RT_ASSERT(fd != RT_NULL); RT_ASSERT(fd != RT_NULL);
result = f_close(fd); result = f_close(fd);
if (result == FR_OK) if (result == FR_OK)
{ {
/* release memory */ /* release memory */
rt_free(fd); rt_free(fd);
} }
} }
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
int dfs_elm_ioctl(struct dfs_fd *file, int cmd, void *args) int dfs_elm_ioctl(struct dfs_fd *file, int cmd, void *args)
{ {
return -DFS_STATUS_ENOSYS; return -DFS_STATUS_ENOSYS;
} }
int dfs_elm_read(struct dfs_fd *file, void *buf, rt_size_t len) int dfs_elm_read(struct dfs_fd *file, void *buf, rt_size_t len)
{ {
FIL *fd; FIL *fd;
FRESULT result; FRESULT result;
UINT byte_read; UINT byte_read;
if (file->type == FT_DIRECTORY) if (file->type == FT_DIRECTORY)
{ {
return -DFS_STATUS_EISDIR; return -DFS_STATUS_EISDIR;
} }
fd = (FIL *)(file->data); fd = (FIL *)(file->data);
RT_ASSERT(fd != RT_NULL); RT_ASSERT(fd != RT_NULL);
result = f_read(fd, buf, len, &byte_read); result = f_read(fd, buf, len, &byte_read);
/* update position */ /* update position */
file->pos = fd->fptr; file->pos = fd->fptr;
if (result == FR_OK) if (result == FR_OK)
return byte_read; return byte_read;
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
int dfs_elm_write(struct dfs_fd *file, const void *buf, rt_size_t len) int dfs_elm_write(struct dfs_fd *file, const void *buf, rt_size_t len)
{ {
FIL *fd; FIL *fd;
FRESULT result; FRESULT result;
UINT byte_write; UINT byte_write;
if (file->type == FT_DIRECTORY) if (file->type == FT_DIRECTORY)
{ {
return -DFS_STATUS_EISDIR; return -DFS_STATUS_EISDIR;
} }
fd = (FIL *)(file->data); fd = (FIL *)(file->data);
RT_ASSERT(fd != RT_NULL); RT_ASSERT(fd != RT_NULL);
result = f_write(fd, buf, len, &byte_write); result = f_write(fd, buf, len, &byte_write);
/* update position and file size */ /* update position and file size */
file->pos = fd->fptr; file->pos = fd->fptr;
file->size = fd->fsize; file->size = fd->fsize;
if (result == FR_OK) if (result == FR_OK)
return byte_write; return byte_write;
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
int dfs_elm_flush(struct dfs_fd *file) int dfs_elm_flush(struct dfs_fd *file)
{ {
FIL *fd; FIL *fd;
FRESULT result; FRESULT result;
fd = (FIL *)(file->data); fd = (FIL *)(file->data);
RT_ASSERT(fd != RT_NULL); RT_ASSERT(fd != RT_NULL);
result = f_sync(fd); result = f_sync(fd);
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
int dfs_elm_lseek(struct dfs_fd *file, rt_off_t offset) int dfs_elm_lseek(struct dfs_fd *file, rt_off_t offset)
{ {
FRESULT result = FR_OK; FRESULT result = FR_OK;
if (file->type == FT_REGULAR) if (file->type == FT_REGULAR)
{ {
FIL *fd; FIL *fd;
/* regular file type */ /* regular file type */
fd = (FIL *)(file->data); fd = (FIL *)(file->data);
RT_ASSERT(fd != RT_NULL); RT_ASSERT(fd != RT_NULL);
result = f_lseek(fd, offset); result = f_lseek(fd, offset);
if (result == FR_OK) if (result == FR_OK)
{ {
/* return current position */ /* return current position */
file->pos = fd->fptr; file->pos = fd->fptr;
return fd->fptr; return fd->fptr;
} }
} }
else if (file->type == FT_DIRECTORY) else if (file->type == FT_DIRECTORY)
{ {
/* which is a directory */ /* which is a directory */
DIR *dir; DIR *dir;
dir = (DIR *)(file->data); dir = (DIR *)(file->data);
RT_ASSERT(dir != RT_NULL); RT_ASSERT(dir != RT_NULL);
result = f_seekdir(dir, offset / sizeof(struct dirent)); result = f_seekdir(dir, offset / sizeof(struct dirent));
if (result == FR_OK) if (result == FR_OK)
{ {
/* update file position */ /* update file position */
file->pos = offset; file->pos = offset;
return file->pos; return file->pos;
} }
} }
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
int dfs_elm_getdents(struct dfs_fd *file, struct dirent *dirp, rt_uint32_t count) int dfs_elm_getdents(struct dfs_fd *file, struct dirent *dirp, rt_uint32_t count)
{ {
DIR *dir; DIR *dir;
FILINFO fno; FILINFO fno;
FRESULT result; FRESULT result;
rt_uint32_t index; rt_uint32_t index;
struct dirent *d; struct dirent *d;
dir = (DIR *)(file->data); dir = (DIR *)(file->data);
RT_ASSERT(dir != RT_NULL); RT_ASSERT(dir != RT_NULL);
/* make integer count */ /* make integer count */
count = (count / sizeof(struct dirent)) * sizeof(struct dirent); count = (count / sizeof(struct dirent)) * sizeof(struct dirent);
if (count == 0) if (count == 0)
return -DFS_STATUS_EINVAL; return -DFS_STATUS_EINVAL;
#if _USE_LFN #if _USE_LFN
/* allocate long file name */ /* allocate long file name */
fno.lfname = rt_malloc(256); fno.lfname = rt_malloc(256);
fno.lfsize = 256; fno.lfsize = 256;
#endif #endif
index = 0; index = 0;
while (1) while (1)
{ {
char *fn; char *fn;
d = dirp + index; d = dirp + index;
result = f_readdir(dir, &fno); result = f_readdir(dir, &fno);
if (result != FR_OK || fno.fname[0] == 0) if (result != FR_OK || fno.fname[0] == 0)
break; break;
#if _USE_LFN #if _USE_LFN
fn = *fno.lfname? fno.lfname : fno.fname; fn = *fno.lfname ? fno.lfname : fno.fname;
#else #else
fn = fno.fname; fn = fno.fname;
#endif #endif
d->d_type = DFS_DT_UNKNOWN; d->d_type = DFS_DT_UNKNOWN;
if (fno.fattrib & AM_DIR) if (fno.fattrib & AM_DIR)
d->d_type = DFS_DT_DIR; d->d_type = DFS_DT_DIR;
else else
d->d_type = DFS_DT_REG; d->d_type = DFS_DT_REG;
d->d_namlen = (rt_uint8_t)rt_strlen(fn); d->d_namlen = (rt_uint8_t)rt_strlen(fn);
d->d_reclen = (rt_uint16_t)sizeof(struct dirent); d->d_reclen = (rt_uint16_t)sizeof(struct dirent);
rt_strncpy(d->d_name, fn, rt_strlen(fn) + 1); rt_strncpy(d->d_name, fn, rt_strlen(fn) + 1);
index ++; index ++;
if (index * sizeof(struct dirent) >= count) if (index * sizeof(struct dirent) >= count)
break; break;
} }
#if _USE_LFN #if _USE_LFN
rt_free(fno.lfname); rt_free(fno.lfname);
#endif #endif
if (index == 0) if (index == 0)
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
file->pos += index * sizeof(struct dirent); file->pos += index * sizeof(struct dirent);
return index * sizeof(struct dirent); return index * sizeof(struct dirent);
} }
int dfs_elm_unlink(struct dfs_filesystem *fs, const char *path) int dfs_elm_unlink(struct dfs_filesystem *fs, const char *path)
{ {
FRESULT result; FRESULT result;
#if _VOLUMES > 1 #if _VOLUMES > 1
int vol; int vol;
char *drivers_fn; char *drivers_fn;
extern int elm_get_vol(FATFS *fat); extern int elm_get_vol(FATFS * fat);
/* add path for ELM FatFS driver support */ /* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)fs->data); vol = elm_get_vol((FATFS *)fs->data);
if (vol < 0) if (vol < 0)
return -DFS_STATUS_ENOENT; return -DFS_STATUS_ENOENT;
drivers_fn = rt_malloc(256); drivers_fn = rt_malloc(256);
if (drivers_fn == RT_NULL) if (drivers_fn == RT_NULL)
return -DFS_STATUS_ENOMEM; return -DFS_STATUS_ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, path); rt_snprintf(drivers_fn, 256, "%d:%s", vol, path);
#else #else
const char *drivers_fn; const char *drivers_fn;
drivers_fn = path; drivers_fn = path;
#endif #endif
result = f_unlink(drivers_fn); result = f_unlink(drivers_fn);
#if _VOLUMES > 1 #if _VOLUMES > 1
rt_free(drivers_fn); rt_free(drivers_fn);
#endif #endif
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
int dfs_elm_rename(struct dfs_filesystem *fs, const char *oldpath, const char *newpath) int dfs_elm_rename(struct dfs_filesystem *fs, const char *oldpath, const char *newpath)
{ {
FRESULT result; FRESULT result;
#if _VOLUMES > 1 #if _VOLUMES > 1
char *drivers_oldfn; char *drivers_oldfn;
const char *drivers_newfn; const char *drivers_newfn;
int vol; int vol;
extern int elm_get_vol(FATFS *fat); extern int elm_get_vol(FATFS * fat);
/* add path for ELM FatFS driver support */ /* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)fs->data); vol = elm_get_vol((FATFS *)fs->data);
if (vol < 0) if (vol < 0)
return -DFS_STATUS_ENOENT; return -DFS_STATUS_ENOENT;
drivers_oldfn = rt_malloc(256); drivers_oldfn = rt_malloc(256);
if (drivers_oldfn == RT_NULL) if (drivers_oldfn == RT_NULL)
return -DFS_STATUS_ENOMEM; return -DFS_STATUS_ENOMEM;
drivers_newfn = newpath; drivers_newfn = newpath;
rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, oldpath); rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, oldpath);
#else #else
const char *drivers_oldfn, *drivers_newfn; const char *drivers_oldfn, *drivers_newfn;
drivers_oldfn = oldpath; drivers_oldfn = oldpath;
drivers_newfn = newpath; drivers_newfn = newpath;
#endif #endif
result = f_rename(drivers_oldfn, drivers_newfn); result = f_rename(drivers_oldfn, drivers_newfn);
#if _VOLUMES > 1 #if _VOLUMES > 1
rt_free(drivers_oldfn); rt_free(drivers_oldfn);
#endif #endif
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
int dfs_elm_stat(struct dfs_filesystem *fs, const char *path, struct stat *st) int dfs_elm_stat(struct dfs_filesystem *fs, const char *path, struct stat *st)
{ {
FILINFO file_info; FILINFO file_info;
FRESULT result; FRESULT result;
#if _VOLUMES > 1 #if _VOLUMES > 1
int vol; int vol;
char *drivers_fn; char *drivers_fn;
extern int elm_get_vol(FATFS *fat); extern int elm_get_vol(FATFS * fat);
/* add path for ELM FatFS driver support */ /* add path for ELM FatFS driver support */
vol = elm_get_vol((FATFS *)fs->data); vol = elm_get_vol((FATFS *)fs->data);
if (vol < 0) if (vol < 0)
return -DFS_STATUS_ENOENT; return -DFS_STATUS_ENOENT;
drivers_fn = rt_malloc(256); drivers_fn = rt_malloc(256);
if (drivers_fn == RT_NULL) if (drivers_fn == RT_NULL)
return -DFS_STATUS_ENOMEM; return -DFS_STATUS_ENOMEM;
rt_snprintf(drivers_fn, 256, "%d:%s", vol, path); rt_snprintf(drivers_fn, 256, "%d:%s", vol, path);
#else #else
const char *drivers_fn; const char *drivers_fn;
drivers_fn = path; drivers_fn = path;
#endif #endif
#if _USE_LFN #if _USE_LFN
/* allocate long file name */ /* allocate long file name */
file_info.lfname = rt_malloc(256); file_info.lfname = rt_malloc(256);
file_info.lfsize = 256; file_info.lfsize = 256;
#endif #endif
result = f_stat(drivers_fn, &file_info); result = f_stat(drivers_fn, &file_info);
#if _VOLUMES > 1 #if _VOLUMES > 1
rt_free(drivers_fn); rt_free(drivers_fn);
#endif #endif
if (result == FR_OK) if (result == FR_OK)
{ {
/* convert to dfs stat structure */ /* convert to dfs stat structure */
st->st_dev = 0; st->st_dev = 0;
st->st_mode = DFS_S_IFREG | DFS_S_IRUSR | DFS_S_IRGRP | DFS_S_IROTH | st->st_mode = DFS_S_IFREG | DFS_S_IRUSR | DFS_S_IRGRP | DFS_S_IROTH |
DFS_S_IWUSR | DFS_S_IWGRP | DFS_S_IWOTH; DFS_S_IWUSR | DFS_S_IWGRP | DFS_S_IWOTH;
if (file_info.fattrib & AM_DIR) if (file_info.fattrib & AM_DIR)
{ {
st->st_mode &= ~DFS_S_IFREG; st->st_mode &= ~DFS_S_IFREG;
st->st_mode |= DFS_S_IFDIR | DFS_S_IXUSR | DFS_S_IXGRP | DFS_S_IXOTH; st->st_mode |= DFS_S_IFDIR | DFS_S_IXUSR | DFS_S_IXGRP | DFS_S_IXOTH;
} }
if (file_info.fattrib & AM_RDO) if (file_info.fattrib & AM_RDO)
st->st_mode &= ~(DFS_S_IWUSR | DFS_S_IWGRP | DFS_S_IWOTH); st->st_mode &= ~(DFS_S_IWUSR | DFS_S_IWGRP | DFS_S_IWOTH);
st->st_size = file_info.fsize; st->st_size = file_info.fsize;
st->st_mtime = file_info.ftime; st->st_mtime = file_info.ftime;
st->st_blksize = 512; st->st_blksize = 512;
} }
#if _USE_LFN #if _USE_LFN
rt_free(file_info.lfname); rt_free(file_info.lfname);
#endif #endif
return elm_result_to_dfs(result); return elm_result_to_dfs(result);
} }
static const struct dfs_filesystem_operation dfs_elm = static const struct dfs_filesystem_operation dfs_elm =
{ {
"elm", "elm",
DFS_FS_FLAG_DEFAULT, DFS_FS_FLAG_DEFAULT,
dfs_elm_mount, dfs_elm_mount,
dfs_elm_unmount, dfs_elm_unmount,
dfs_elm_mkfs, dfs_elm_mkfs,
dfs_elm_statfs, dfs_elm_statfs,
dfs_elm_open, dfs_elm_open,
dfs_elm_close, dfs_elm_close,
dfs_elm_ioctl, dfs_elm_ioctl,
dfs_elm_read, dfs_elm_read,
dfs_elm_write, dfs_elm_write,
dfs_elm_flush, dfs_elm_flush,
dfs_elm_lseek, dfs_elm_lseek,
dfs_elm_getdents, dfs_elm_getdents,
dfs_elm_unlink, dfs_elm_unlink,
dfs_elm_stat, dfs_elm_stat,
dfs_elm_rename, dfs_elm_rename,
}; };
int elm_init(void) int elm_init(void)
...@@ -742,7 +742,7 @@ int elm_init(void) ...@@ -742,7 +742,7 @@ int elm_init(void)
/* register fatfs file system */ /* register fatfs file system */
dfs_register(&dfs_elm); dfs_register(&dfs_elm);
return 0; return 0;
} }
/* /*
...@@ -753,97 +753,97 @@ int elm_init(void) ...@@ -753,97 +753,97 @@ int elm_init(void)
/* Initialize a Drive */ /* Initialize a Drive */
DSTATUS disk_initialize(BYTE drv) DSTATUS disk_initialize(BYTE drv)
{ {
return 0; return 0;
} }
/* Return Disk Status */ /* Return Disk Status */
DSTATUS disk_status(BYTE drv) DSTATUS disk_status(BYTE drv)
{ {
return 0; return 0;
} }
/* Read Sector(s) */ /* Read Sector(s) */
DRESULT disk_read(BYTE drv, BYTE *buff, DWORD sector, BYTE count) DRESULT disk_read(BYTE drv, BYTE *buff, DWORD sector, BYTE count)
{ {
rt_size_t result; rt_size_t result;
rt_device_t device = disk[drv]; rt_device_t device = disk[drv];
result = rt_device_read(device, sector, buff, count); result = rt_device_read(device, sector, buff, count);
if (result == count) if (result == count)
{ {
return RES_OK; return RES_OK;
} }
return RES_ERROR; return RES_ERROR;
} }
/* Write Sector(s) */ /* Write Sector(s) */
DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, BYTE count) DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, BYTE count)
{ {
rt_size_t result; rt_size_t result;
rt_device_t device = disk[drv]; rt_device_t device = disk[drv];
result = rt_device_write(device, sector, buff, count); result = rt_device_write(device, sector, buff, count);
if (result == count) if (result == count)
{ {
return RES_OK; return RES_OK;
} }
return RES_ERROR; return RES_ERROR;
} }
/* Miscellaneous Functions */ /* Miscellaneous Functions */
DRESULT disk_ioctl(BYTE drv, BYTE ctrl, void *buff) DRESULT disk_ioctl(BYTE drv, BYTE ctrl, void *buff)
{ {
rt_device_t device = disk[drv]; rt_device_t device = disk[drv];
if (device == RT_NULL) if (device == RT_NULL)
return RES_ERROR; return RES_ERROR;
if (ctrl == GET_SECTOR_COUNT) if (ctrl == GET_SECTOR_COUNT)
{ {
struct rt_device_blk_geometry geometry; struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry)); rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry); rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(DWORD *)buff = geometry.sector_count; *(DWORD *)buff = geometry.sector_count;
if (geometry.sector_count == 0) if (geometry.sector_count == 0)
return RES_ERROR; return RES_ERROR;
} }
else if (ctrl == GET_SECTOR_SIZE) else if (ctrl == GET_SECTOR_SIZE)
{ {
struct rt_device_blk_geometry geometry; struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry)); rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry); rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(WORD *)buff = (WORD)(geometry.bytes_per_sector); *(WORD *)buff = (WORD)(geometry.bytes_per_sector);
} }
else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */ else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */
{ {
struct rt_device_blk_geometry geometry; struct rt_device_blk_geometry geometry;
rt_memset(&geometry, 0, sizeof(geometry)); rt_memset(&geometry, 0, sizeof(geometry));
rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry); rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
*(DWORD *)buff = geometry.block_size/geometry.bytes_per_sector; *(DWORD *)buff = geometry.block_size / geometry.bytes_per_sector;
} }
else if (ctrl == CTRL_SYNC) else if (ctrl == CTRL_SYNC)
{ {
rt_device_control(device, RT_DEVICE_CTRL_BLK_SYNC, RT_NULL); rt_device_control(device, RT_DEVICE_CTRL_BLK_SYNC, RT_NULL);
} }
else if (ctrl == CTRL_ERASE_SECTOR) else if (ctrl == CTRL_ERASE_SECTOR)
{ {
rt_device_control(device, RT_DEVICE_CTRL_BLK_ERASE, buff); rt_device_control(device, RT_DEVICE_CTRL_BLK_ERASE, buff);
} }
return RES_OK; return RES_OK;
} }
rt_time_t get_fattime(void) rt_time_t get_fattime(void)
{ {
return 0; return 0;
} }
#if _FS_REENTRANT #if _FS_REENTRANT
...@@ -874,14 +874,14 @@ int ff_del_syncobj(_SYNC_t m) ...@@ -874,14 +874,14 @@ int ff_del_syncobj(_SYNC_t m)
int ff_req_grant(_SYNC_t m) int ff_req_grant(_SYNC_t m)
{ {
if (rt_mutex_take(m, _FS_TIMEOUT) == RT_EOK) if (rt_mutex_take(m, _FS_TIMEOUT) == RT_EOK)
return RT_TRUE; return RT_TRUE;
return RT_FALSE; return RT_FALSE;
} }
void ff_rel_grant(_SYNC_t m) void ff_rel_grant(_SYNC_t m)
{ {
rt_mutex_release(m); rt_mutex_release(m);
} }
#endif #endif
...@@ -889,13 +889,13 @@ void ff_rel_grant(_SYNC_t m) ...@@ -889,13 +889,13 @@ void ff_rel_grant(_SYNC_t m)
/* Memory functions */ /* Memory functions */
#if _USE_LFN == 3 #if _USE_LFN == 3
/* Allocate memory block */ /* Allocate memory block */
void* ff_memalloc (UINT size) void *ff_memalloc(UINT size)
{ {
return rt_malloc(size); return rt_malloc(size);
} }
/* Free memory block */ /* Free memory block */
void ff_memfree (void* mem) void ff_memfree(void *mem)
{ {
rt_free(mem); rt_free(mem);
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册