// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package x509 parses X.509-encoded keys and certificates. // // START CT CHANGES // This is a fork of the go library crypto/x509 package, it's more relaxed // about certificates that it'll accept, and exports the TBSCertificate // structure. // END CT CHANGES package x509 import ( "bytes" "crypto" "crypto/dsa" "crypto/ecdsa" "crypto/elliptic" "crypto/rsa" "crypto/sha1" // START CT CHANGES "github.com/google/certificate-transparency/go/asn1" "github.com/google/certificate-transparency/go/x509/pkix" // END CT CHANGES "encoding/pem" "errors" // START CT CHANGES "fmt" // END CT CHANGES "io" "math/big" "net" "time" ) // pkixPublicKey reflects a PKIX public key structure. See SubjectPublicKeyInfo // in RFC 3280. type pkixPublicKey struct { Algo pkix.AlgorithmIdentifier BitString asn1.BitString } // ParsePKIXPublicKey parses a DER encoded public key. These values are // typically found in PEM blocks with "BEGIN PUBLIC KEY". func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error) { var pki publicKeyInfo if _, err = asn1.Unmarshal(derBytes, &pki); err != nil { return } algo := getPublicKeyAlgorithmFromOID(pki.Algorithm.Algorithm) if algo == UnknownPublicKeyAlgorithm { return nil, errors.New("x509: unknown public key algorithm") } return parsePublicKey(algo, &pki) } func marshalPublicKey(pub interface{}) (publicKeyBytes []byte, publicKeyAlgorithm pkix.AlgorithmIdentifier, err error) { switch pub := pub.(type) { case *rsa.PublicKey: publicKeyBytes, err = asn1.Marshal(rsaPublicKey{ N: pub.N, E: pub.E, }) publicKeyAlgorithm.Algorithm = oidPublicKeyRSA // This is a NULL parameters value which is technically // superfluous, but most other code includes it and, by // doing this, we match their public key hashes. publicKeyAlgorithm.Parameters = asn1.RawValue{ Tag: 5, } case *ecdsa.PublicKey: publicKeyBytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y) oid, ok := oidFromNamedCurve(pub.Curve) if !ok { return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: unsupported elliptic curve") } publicKeyAlgorithm.Algorithm = oidPublicKeyECDSA var paramBytes []byte paramBytes, err = asn1.Marshal(oid) if err != nil { return } publicKeyAlgorithm.Parameters.FullBytes = paramBytes default: return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: only RSA and ECDSA public keys supported") } return publicKeyBytes, publicKeyAlgorithm, nil } // MarshalPKIXPublicKey serialises a public key to DER-encoded PKIX format. func MarshalPKIXPublicKey(pub interface{}) ([]byte, error) { var publicKeyBytes []byte var publicKeyAlgorithm pkix.AlgorithmIdentifier var err error if publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(pub); err != nil { return nil, err } pkix := pkixPublicKey{ Algo: publicKeyAlgorithm, BitString: asn1.BitString{ Bytes: publicKeyBytes, BitLength: 8 * len(publicKeyBytes), }, } ret, _ := asn1.Marshal(pkix) return ret, nil } // These structures reflect the ASN.1 structure of X.509 certificates.: type certificate struct { Raw asn1.RawContent TBSCertificate tbsCertificate SignatureAlgorithm pkix.AlgorithmIdentifier SignatureValue asn1.BitString } type tbsCertificate struct { Raw asn1.RawContent Version int `asn1:"optional,explicit,default:1,tag:0"` SerialNumber *big.Int SignatureAlgorithm pkix.AlgorithmIdentifier Issuer asn1.RawValue Validity validity Subject asn1.RawValue PublicKey publicKeyInfo UniqueId asn1.BitString `asn1:"optional,tag:1"` SubjectUniqueId asn1.BitString `asn1:"optional,tag:2"` Extensions []pkix.Extension `asn1:"optional,explicit,tag:3"` } type dsaAlgorithmParameters struct { P, Q, G *big.Int } type dsaSignature struct { R, S *big.Int } type ecdsaSignature dsaSignature type validity struct { NotBefore, NotAfter time.Time } type publicKeyInfo struct { Raw asn1.RawContent Algorithm pkix.AlgorithmIdentifier PublicKey asn1.BitString } // RFC 5280, 4.2.1.1 type authKeyId struct { Id []byte `asn1:"optional,tag:0"` } type SignatureAlgorithm int const ( UnknownSignatureAlgorithm SignatureAlgorithm = iota MD2WithRSA MD5WithRSA SHA1WithRSA SHA256WithRSA SHA384WithRSA SHA512WithRSA DSAWithSHA1 DSAWithSHA256 ECDSAWithSHA1 ECDSAWithSHA256 ECDSAWithSHA384 ECDSAWithSHA512 ) type PublicKeyAlgorithm int const ( UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota RSA DSA ECDSA ) // OIDs for signature algorithms // // pkcs-1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 } // // // RFC 3279 2.2.1 RSA Signature Algorithms // // md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 } // // md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 } // // sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 } // // dsaWithSha1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 3 } // // RFC 3279 2.2.3 ECDSA Signature Algorithm // // ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) ansi-x962(10045) // signatures(4) ecdsa-with-SHA1(1)} // // // RFC 4055 5 PKCS #1 Version 1.5 // // sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 } // // sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 } // // sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 } // // // RFC 5758 3.1 DSA Signature Algorithms // // dsaWithSha256 OBJECT IDENTIFIER ::= { // joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101) // csor(3) algorithms(4) id-dsa-with-sha2(3) 2} // // RFC 5758 3.2 ECDSA Signature Algorithm // // ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2) // us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 } // // ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2) // us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 } // // ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2) // us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 } var ( oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2} oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4} oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5} oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11} oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12} oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13} oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3} oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2} oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1} oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2} oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3} oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4} ) func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) SignatureAlgorithm { switch { case oid.Equal(oidSignatureMD2WithRSA): return MD2WithRSA case oid.Equal(oidSignatureMD5WithRSA): return MD5WithRSA case oid.Equal(oidSignatureSHA1WithRSA): return SHA1WithRSA case oid.Equal(oidSignatureSHA256WithRSA): return SHA256WithRSA case oid.Equal(oidSignatureSHA384WithRSA): return SHA384WithRSA case oid.Equal(oidSignatureSHA512WithRSA): return SHA512WithRSA case oid.Equal(oidSignatureDSAWithSHA1): return DSAWithSHA1 case oid.Equal(oidSignatureDSAWithSHA256): return DSAWithSHA256 case oid.Equal(oidSignatureECDSAWithSHA1): return ECDSAWithSHA1 case oid.Equal(oidSignatureECDSAWithSHA256): return ECDSAWithSHA256 case oid.Equal(oidSignatureECDSAWithSHA384): return ECDSAWithSHA384 case oid.Equal(oidSignatureECDSAWithSHA512): return ECDSAWithSHA512 } return UnknownSignatureAlgorithm } // RFC 3279, 2.3 Public Key Algorithms // // pkcs-1 OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840) // rsadsi(113549) pkcs(1) 1 } // // rsaEncryption OBJECT IDENTIFIER ::== { pkcs1-1 1 } // // id-dsa OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840) // x9-57(10040) x9cm(4) 1 } // // RFC 5480, 2.1.1 Unrestricted Algorithm Identifier and Parameters // // id-ecPublicKey OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 } var ( oidPublicKeyRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1} oidPublicKeyDSA = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1} oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1} ) func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm { switch { case oid.Equal(oidPublicKeyRSA): return RSA case oid.Equal(oidPublicKeyDSA): return DSA case oid.Equal(oidPublicKeyECDSA): return ECDSA } return UnknownPublicKeyAlgorithm } // RFC 5480, 2.1.1.1. Named Curve // // secp224r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 33 } // // secp256r1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3) // prime(1) 7 } // // secp384r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 34 } // // secp521r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 35 } // // NB: secp256r1 is equivalent to prime256v1 var ( oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33} oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7} oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34} oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35} ) func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve { switch { case oid.Equal(oidNamedCurveP224): return elliptic.P224() case oid.Equal(oidNamedCurveP256): return elliptic.P256() case oid.Equal(oidNamedCurveP384): return elliptic.P384() case oid.Equal(oidNamedCurveP521): return elliptic.P521() } return nil } func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) { switch curve { case elliptic.P224(): return oidNamedCurveP224, true case elliptic.P256(): return oidNamedCurveP256, true case elliptic.P384(): return oidNamedCurveP384, true case elliptic.P521(): return oidNamedCurveP521, true } return nil, false } // KeyUsage represents the set of actions that are valid for a given key. It's // a bitmap of the KeyUsage* constants. type KeyUsage int const ( KeyUsageDigitalSignature KeyUsage = 1 << iota KeyUsageContentCommitment KeyUsageKeyEncipherment KeyUsageDataEncipherment KeyUsageKeyAgreement KeyUsageCertSign KeyUsageCRLSign KeyUsageEncipherOnly KeyUsageDecipherOnly ) // RFC 5280, 4.2.1.12 Extended Key Usage // // anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 } // // id-kp OBJECT IDENTIFIER ::= { id-pkix 3 } // // id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 } // id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 } // id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 } // id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 } // id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 } // id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 } var ( oidExtKeyUsageAny = asn1.ObjectIdentifier{2, 5, 29, 37, 0} oidExtKeyUsageServerAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 1} oidExtKeyUsageClientAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 2} oidExtKeyUsageCodeSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 3} oidExtKeyUsageEmailProtection = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 4} oidExtKeyUsageIPSECEndSystem = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 5} oidExtKeyUsageIPSECTunnel = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 6} oidExtKeyUsageIPSECUser = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 7} oidExtKeyUsageTimeStamping = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 8} oidExtKeyUsageOCSPSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 9} oidExtKeyUsageMicrosoftServerGatedCrypto = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 311, 10, 3, 3} oidExtKeyUsageNetscapeServerGatedCrypto = asn1.ObjectIdentifier{2, 16, 840, 1, 113730, 4, 1} ) // ExtKeyUsage represents an extended set of actions that are valid for a given key. // Each of the ExtKeyUsage* constants define a unique action. type ExtKeyUsage int const ( ExtKeyUsageAny ExtKeyUsage = iota ExtKeyUsageServerAuth ExtKeyUsageClientAuth ExtKeyUsageCodeSigning ExtKeyUsageEmailProtection ExtKeyUsageIPSECEndSystem ExtKeyUsageIPSECTunnel ExtKeyUsageIPSECUser ExtKeyUsageTimeStamping ExtKeyUsageOCSPSigning ExtKeyUsageMicrosoftServerGatedCrypto ExtKeyUsageNetscapeServerGatedCrypto ) // extKeyUsageOIDs contains the mapping between an ExtKeyUsage and its OID. var extKeyUsageOIDs = []struct { extKeyUsage ExtKeyUsage oid asn1.ObjectIdentifier }{ {ExtKeyUsageAny, oidExtKeyUsageAny}, {ExtKeyUsageServerAuth, oidExtKeyUsageServerAuth}, {ExtKeyUsageClientAuth, oidExtKeyUsageClientAuth}, {ExtKeyUsageCodeSigning, oidExtKeyUsageCodeSigning}, {ExtKeyUsageEmailProtection, oidExtKeyUsageEmailProtection}, {ExtKeyUsageIPSECEndSystem, oidExtKeyUsageIPSECEndSystem}, {ExtKeyUsageIPSECTunnel, oidExtKeyUsageIPSECTunnel}, {ExtKeyUsageIPSECUser, oidExtKeyUsageIPSECUser}, {ExtKeyUsageTimeStamping, oidExtKeyUsageTimeStamping}, {ExtKeyUsageOCSPSigning, oidExtKeyUsageOCSPSigning}, {ExtKeyUsageMicrosoftServerGatedCrypto, oidExtKeyUsageMicrosoftServerGatedCrypto}, {ExtKeyUsageNetscapeServerGatedCrypto, oidExtKeyUsageNetscapeServerGatedCrypto}, } func extKeyUsageFromOID(oid asn1.ObjectIdentifier) (eku ExtKeyUsage, ok bool) { for _, pair := range extKeyUsageOIDs { if oid.Equal(pair.oid) { return pair.extKeyUsage, true } } return } func oidFromExtKeyUsage(eku ExtKeyUsage) (oid asn1.ObjectIdentifier, ok bool) { for _, pair := range extKeyUsageOIDs { if eku == pair.extKeyUsage { return pair.oid, true } } return } // A Certificate represents an X.509 certificate. type Certificate struct { Raw []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature). RawTBSCertificate []byte // Certificate part of raw ASN.1 DER content. RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo. RawSubject []byte // DER encoded Subject RawIssuer []byte // DER encoded Issuer Signature []byte SignatureAlgorithm SignatureAlgorithm PublicKeyAlgorithm PublicKeyAlgorithm PublicKey interface{} Version int SerialNumber *big.Int Issuer pkix.Name Subject pkix.Name NotBefore, NotAfter time.Time // Validity bounds. KeyUsage KeyUsage // Extensions contains raw X.509 extensions. When parsing certificates, // this can be used to extract non-critical extensions that are not // parsed by this package. When marshaling certificates, the Extensions // field is ignored, see ExtraExtensions. Extensions []pkix.Extension // ExtraExtensions contains extensions to be copied, raw, into any // marshaled certificates. Values override any extensions that would // otherwise be produced based on the other fields. The ExtraExtensions // field is not populated when parsing certificates, see Extensions. ExtraExtensions []pkix.Extension ExtKeyUsage []ExtKeyUsage // Sequence of extended key usages. UnknownExtKeyUsage []asn1.ObjectIdentifier // Encountered extended key usages unknown to this package. BasicConstraintsValid bool // if true then the next two fields are valid. IsCA bool MaxPathLen int SubjectKeyId []byte AuthorityKeyId []byte // RFC 5280, 4.2.2.1 (Authority Information Access) OCSPServer []string IssuingCertificateURL []string // Subject Alternate Name values DNSNames []string EmailAddresses []string IPAddresses []net.IP // Name constraints PermittedDNSDomainsCritical bool // if true then the name constraints are marked critical. PermittedDNSDomains []string // CRL Distribution Points CRLDistributionPoints []string PolicyIdentifiers []asn1.ObjectIdentifier } // ErrUnsupportedAlgorithm results from attempting to perform an operation that // involves algorithms that are not currently implemented. var ErrUnsupportedAlgorithm = errors.New("x509: cannot verify signature: algorithm unimplemented") // ConstraintViolationError results when a requested usage is not permitted by // a certificate. For example: checking a signature when the public key isn't a // certificate signing key. type ConstraintViolationError struct{} func (ConstraintViolationError) Error() string { return "x509: invalid signature: parent certificate cannot sign this kind of certificate" } func (c *Certificate) Equal(other *Certificate) bool { return bytes.Equal(c.Raw, other.Raw) } // Entrust have a broken root certificate (CN=Entrust.net Certification // Authority (2048)) which isn't marked as a CA certificate and is thus invalid // according to PKIX. // We recognise this certificate by its SubjectPublicKeyInfo and exempt it // from the Basic Constraints requirement. // See http://www.entrust.net/knowledge-base/technote.cfm?tn=7869 // // TODO(agl): remove this hack once their reissued root is sufficiently // widespread. var entrustBrokenSPKI = []byte{ 0x30, 0x82, 0x01, 0x22, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03, 0x82, 0x01, 0x0f, 0x00, 0x30, 0x82, 0x01, 0x0a, 0x02, 0x82, 0x01, 0x01, 0x00, 0x97, 0xa3, 0x2d, 0x3c, 0x9e, 0xde, 0x05, 0xda, 0x13, 0xc2, 0x11, 0x8d, 0x9d, 0x8e, 0xe3, 0x7f, 0xc7, 0x4b, 0x7e, 0x5a, 0x9f, 0xb3, 0xff, 0x62, 0xab, 0x73, 0xc8, 0x28, 0x6b, 0xba, 0x10, 0x64, 0x82, 0x87, 0x13, 0xcd, 0x57, 0x18, 0xff, 0x28, 0xce, 0xc0, 0xe6, 0x0e, 0x06, 0x91, 0x50, 0x29, 0x83, 0xd1, 0xf2, 0xc3, 0x2a, 0xdb, 0xd8, 0xdb, 0x4e, 0x04, 0xcc, 0x00, 0xeb, 0x8b, 0xb6, 0x96, 0xdc, 0xbc, 0xaa, 0xfa, 0x52, 0x77, 0x04, 0xc1, 0xdb, 0x19, 0xe4, 0xae, 0x9c, 0xfd, 0x3c, 0x8b, 0x03, 0xef, 0x4d, 0xbc, 0x1a, 0x03, 0x65, 0xf9, 0xc1, 0xb1, 0x3f, 0x72, 0x86, 0xf2, 0x38, 0xaa, 0x19, 0xae, 0x10, 0x88, 0x78, 0x28, 0xda, 0x75, 0xc3, 0x3d, 0x02, 0x82, 0x02, 0x9c, 0xb9, 0xc1, 0x65, 0x77, 0x76, 0x24, 0x4c, 0x98, 0xf7, 0x6d, 0x31, 0x38, 0xfb, 0xdb, 0xfe, 0xdb, 0x37, 0x02, 0x76, 0xa1, 0x18, 0x97, 0xa6, 0xcc, 0xde, 0x20, 0x09, 0x49, 0x36, 0x24, 0x69, 0x42, 0xf6, 0xe4, 0x37, 0x62, 0xf1, 0x59, 0x6d, 0xa9, 0x3c, 0xed, 0x34, 0x9c, 0xa3, 0x8e, 0xdb, 0xdc, 0x3a, 0xd7, 0xf7, 0x0a, 0x6f, 0xef, 0x2e, 0xd8, 0xd5, 0x93, 0x5a, 0x7a, 0xed, 0x08, 0x49, 0x68, 0xe2, 0x41, 0xe3, 0x5a, 0x90, 0xc1, 0x86, 0x55, 0xfc, 0x51, 0x43, 0x9d, 0xe0, 0xb2, 0xc4, 0x67, 0xb4, 0xcb, 0x32, 0x31, 0x25, 0xf0, 0x54, 0x9f, 0x4b, 0xd1, 0x6f, 0xdb, 0xd4, 0xdd, 0xfc, 0xaf, 0x5e, 0x6c, 0x78, 0x90, 0x95, 0xde, 0xca, 0x3a, 0x48, 0xb9, 0x79, 0x3c, 0x9b, 0x19, 0xd6, 0x75, 0x05, 0xa0, 0xf9, 0x88, 0xd7, 0xc1, 0xe8, 0xa5, 0x09, 0xe4, 0x1a, 0x15, 0xdc, 0x87, 0x23, 0xaa, 0xb2, 0x75, 0x8c, 0x63, 0x25, 0x87, 0xd8, 0xf8, 0x3d, 0xa6, 0xc2, 0xcc, 0x66, 0xff, 0xa5, 0x66, 0x68, 0x55, 0x02, 0x03, 0x01, 0x00, 0x01, } // CheckSignatureFrom verifies that the signature on c is a valid signature // from parent. func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err error) { // RFC 5280, 4.2.1.9: // "If the basic constraints extension is not present in a version 3 // certificate, or the extension is present but the cA boolean is not // asserted, then the certified public key MUST NOT be used to verify // certificate signatures." // (except for Entrust, see comment above entrustBrokenSPKI) if (parent.Version == 3 && !parent.BasicConstraintsValid || parent.BasicConstraintsValid && !parent.IsCA) && !bytes.Equal(c.RawSubjectPublicKeyInfo, entrustBrokenSPKI) { return ConstraintViolationError{} } if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCertSign == 0 { return ConstraintViolationError{} } if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm { return ErrUnsupportedAlgorithm } // TODO(agl): don't ignore the path length constraint. return parent.CheckSignature(c.SignatureAlgorithm, c.RawTBSCertificate, c.Signature) } // CheckSignature verifies that signature is a valid signature over signed from // c's public key. func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) (err error) { var hashType crypto.Hash switch algo { case SHA1WithRSA, DSAWithSHA1, ECDSAWithSHA1: hashType = crypto.SHA1 case SHA256WithRSA, DSAWithSHA256, ECDSAWithSHA256: hashType = crypto.SHA256 case SHA384WithRSA, ECDSAWithSHA384: hashType = crypto.SHA384 case SHA512WithRSA, ECDSAWithSHA512: hashType = crypto.SHA512 default: return ErrUnsupportedAlgorithm } if !hashType.Available() { return ErrUnsupportedAlgorithm } h := hashType.New() h.Write(signed) digest := h.Sum(nil) switch pub := c.PublicKey.(type) { case *rsa.PublicKey: return rsa.VerifyPKCS1v15(pub, hashType, digest, signature) case *dsa.PublicKey: dsaSig := new(dsaSignature) if _, err := asn1.Unmarshal(signature, dsaSig); err != nil { return err } if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 { return errors.New("x509: DSA signature contained zero or negative values") } if !dsa.Verify(pub, digest, dsaSig.R, dsaSig.S) { return errors.New("x509: DSA verification failure") } return case *ecdsa.PublicKey: ecdsaSig := new(ecdsaSignature) if _, err := asn1.Unmarshal(signature, ecdsaSig); err != nil { return err } if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 { return errors.New("x509: ECDSA signature contained zero or negative values") } if !ecdsa.Verify(pub, digest, ecdsaSig.R, ecdsaSig.S) { return errors.New("x509: ECDSA verification failure") } return } return ErrUnsupportedAlgorithm } // CheckCRLSignature checks that the signature in crl is from c. func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) (err error) { algo := getSignatureAlgorithmFromOID(crl.SignatureAlgorithm.Algorithm) return c.CheckSignature(algo, crl.TBSCertList.Raw, crl.SignatureValue.RightAlign()) } // START CT CHANGES type UnhandledCriticalExtension struct { ID asn1.ObjectIdentifier } func (h UnhandledCriticalExtension) Error() string { return fmt.Sprintf("x509: unhandled critical extension (%v)", h.ID) } // END CT CHANGES type basicConstraints struct { IsCA bool `asn1:"optional"` MaxPathLen int `asn1:"optional,default:-1"` } // RFC 5280 4.2.1.4 type policyInformation struct { Policy asn1.ObjectIdentifier // policyQualifiers omitted } // RFC 5280, 4.2.1.10 type nameConstraints struct { Permitted []generalSubtree `asn1:"optional,tag:0"` Excluded []generalSubtree `asn1:"optional,tag:1"` } type generalSubtree struct { Name string `asn1:"tag:2,optional,ia5"` } // RFC 5280, 4.2.2.1 type authorityInfoAccess struct { Method asn1.ObjectIdentifier Location asn1.RawValue } // RFC 5280, 4.2.1.14 type distributionPoint struct { DistributionPoint distributionPointName `asn1:"optional,tag:0"` Reason asn1.BitString `asn1:"optional,tag:1"` CRLIssuer asn1.RawValue `asn1:"optional,tag:2"` } type distributionPointName struct { FullName asn1.RawValue `asn1:"optional,tag:0"` RelativeName pkix.RDNSequence `asn1:"optional,tag:1"` } func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, error) { asn1Data := keyData.PublicKey.RightAlign() switch algo { case RSA: p := new(rsaPublicKey) _, err := asn1.Unmarshal(asn1Data, p) if err != nil { return nil, err } if p.N.Sign() <= 0 { return nil, errors.New("x509: RSA modulus is not a positive number") } if p.E <= 0 { return nil, errors.New("x509: RSA public exponent is not a positive number") } pub := &rsa.PublicKey{ E: p.E, N: p.N, } return pub, nil case DSA: var p *big.Int _, err := asn1.Unmarshal(asn1Data, &p) if err != nil { return nil, err } paramsData := keyData.Algorithm.Parameters.FullBytes params := new(dsaAlgorithmParameters) _, err = asn1.Unmarshal(paramsData, params) if err != nil { return nil, err } if p.Sign() <= 0 || params.P.Sign() <= 0 || params.Q.Sign() <= 0 || params.G.Sign() <= 0 { return nil, errors.New("x509: zero or negative DSA parameter") } pub := &dsa.PublicKey{ Parameters: dsa.Parameters{ P: params.P, Q: params.Q, G: params.G, }, Y: p, } return pub, nil case ECDSA: paramsData := keyData.Algorithm.Parameters.FullBytes namedCurveOID := new(asn1.ObjectIdentifier) _, err := asn1.Unmarshal(paramsData, namedCurveOID) if err != nil { return nil, err } namedCurve := namedCurveFromOID(*namedCurveOID) if namedCurve == nil { return nil, errors.New("x509: unsupported elliptic curve") } x, y := elliptic.Unmarshal(namedCurve, asn1Data) if x == nil { return nil, errors.New("x509: failed to unmarshal elliptic curve point") } pub := &ecdsa.PublicKey{ Curve: namedCurve, X: x, Y: y, } return pub, nil default: return nil, nil } } // START CT CHANGES // NonFatalErrors is an error type which can hold a number of other errors. // It's used to collect a range of non-fatal errors which occur while parsing // a certificate, that way we can still match on certs which technically are // invalid. type NonFatalErrors struct { Errors []error } // Adds an error to the list of errors contained by NonFatalErrors. func (e *NonFatalErrors) AddError(err error) { e.Errors = append(e.Errors, err) } // Returns a string consisting of the values of Error() from all of the errors // contained in |e| func (e NonFatalErrors) Error() string { r := "NonFatalErrors: " for _, err := range e.Errors { r += err.Error() + "; " } return r } // Returns true if |e| contains at least one error func (e *NonFatalErrors) HasError() bool { return len(e.Errors) > 0 } // END CT CHANGES func parseCertificate(in *certificate) (*Certificate, error) { // START CT CHANGES var nfe NonFatalErrors // END CT CHANGES out := new(Certificate) out.Raw = in.Raw out.RawTBSCertificate = in.TBSCertificate.Raw out.RawSubjectPublicKeyInfo = in.TBSCertificate.PublicKey.Raw out.RawSubject = in.TBSCertificate.Subject.FullBytes out.RawIssuer = in.TBSCertificate.Issuer.FullBytes out.Signature = in.SignatureValue.RightAlign() out.SignatureAlgorithm = getSignatureAlgorithmFromOID(in.TBSCertificate.SignatureAlgorithm.Algorithm) out.PublicKeyAlgorithm = getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm) var err error out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCertificate.PublicKey) if err != nil { return nil, err } if in.TBSCertificate.SerialNumber.Sign() < 0 { // START CT CHANGES nfe.AddError(errors.New("x509: negative serial number")) // END CT CHANGES } out.Version = in.TBSCertificate.Version + 1 out.SerialNumber = in.TBSCertificate.SerialNumber var issuer, subject pkix.RDNSequence if _, err := asn1.Unmarshal(in.TBSCertificate.Subject.FullBytes, &subject); err != nil { return nil, err } if _, err := asn1.Unmarshal(in.TBSCertificate.Issuer.FullBytes, &issuer); err != nil { return nil, err } out.Issuer.FillFromRDNSequence(&issuer) out.Subject.FillFromRDNSequence(&subject) out.NotBefore = in.TBSCertificate.Validity.NotBefore out.NotAfter = in.TBSCertificate.Validity.NotAfter for _, e := range in.TBSCertificate.Extensions { out.Extensions = append(out.Extensions, e) if len(e.Id) == 4 && e.Id[0] == 2 && e.Id[1] == 5 && e.Id[2] == 29 { switch e.Id[3] { case 15: // RFC 5280, 4.2.1.3 var usageBits asn1.BitString _, err := asn1.Unmarshal(e.Value, &usageBits) if err == nil { var usage int for i := 0; i < 9; i++ { if usageBits.At(i) != 0 { usage |= 1 << uint(i) } } out.KeyUsage = KeyUsage(usage) continue } case 19: // RFC 5280, 4.2.1.9 var constraints basicConstraints _, err := asn1.Unmarshal(e.Value, &constraints) if err == nil { out.BasicConstraintsValid = true out.IsCA = constraints.IsCA out.MaxPathLen = constraints.MaxPathLen continue } case 17: // RFC 5280, 4.2.1.6 // SubjectAltName ::= GeneralNames // // GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName // // GeneralName ::= CHOICE { // otherName [0] OtherName, // rfc822Name [1] IA5String, // dNSName [2] IA5String, // x400Address [3] ORAddress, // directoryName [4] Name, // ediPartyName [5] EDIPartyName, // uniformResourceIdentifier [6] IA5String, // iPAddress [7] OCTET STRING, // registeredID [8] OBJECT IDENTIFIER } var seq asn1.RawValue _, err := asn1.Unmarshal(e.Value, &seq) if err != nil { return nil, err } if !seq.IsCompound || seq.Tag != 16 || seq.Class != 0 { return nil, asn1.StructuralError{Msg: "bad SAN sequence"} } parsedName := false rest := seq.Bytes for len(rest) > 0 { var v asn1.RawValue rest, err = asn1.Unmarshal(rest, &v) if err != nil { return nil, err } switch v.Tag { case 1: out.EmailAddresses = append(out.EmailAddresses, string(v.Bytes)) parsedName = true case 2: out.DNSNames = append(out.DNSNames, string(v.Bytes)) parsedName = true case 7: switch len(v.Bytes) { case net.IPv4len, net.IPv6len: out.IPAddresses = append(out.IPAddresses, v.Bytes) default: // START CT CHANGES nfe.AddError(fmt.Errorf("x509: certificate contained IP address of length %d : %v", len(v.Bytes), v.Bytes)) // END CT CHANGES } } } if parsedName { continue } // If we didn't parse any of the names then we // fall through to the critical check below. case 30: // RFC 5280, 4.2.1.10 // NameConstraints ::= SEQUENCE { // permittedSubtrees [0] GeneralSubtrees OPTIONAL, // excludedSubtrees [1] GeneralSubtrees OPTIONAL } // // GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree // // GeneralSubtree ::= SEQUENCE { // base GeneralName, // minimum [0] BaseDistance DEFAULT 0, // maximum [1] BaseDistance OPTIONAL } // // BaseDistance ::= INTEGER (0..MAX) var constraints nameConstraints _, err := asn1.Unmarshal(e.Value, &constraints) if err != nil { return nil, err } if len(constraints.Excluded) > 0 && e.Critical { // START CT CHANGES nfe.AddError(UnhandledCriticalExtension{e.Id}) // END CT CHANGES } for _, subtree := range constraints.Permitted { if len(subtree.Name) == 0 { if e.Critical { // START CT CHANGES nfe.AddError(UnhandledCriticalExtension{e.Id}) // END CT CHANGES } continue } out.PermittedDNSDomains = append(out.PermittedDNSDomains, subtree.Name) } continue case 31: // RFC 5280, 4.2.1.14 // CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint // // DistributionPoint ::= SEQUENCE { // distributionPoint [0] DistributionPointName OPTIONAL, // reasons [1] ReasonFlags OPTIONAL, // cRLIssuer [2] GeneralNames OPTIONAL } // // DistributionPointName ::= CHOICE { // fullName [0] GeneralNames, // nameRelativeToCRLIssuer [1] RelativeDistinguishedName } var cdp []distributionPoint _, err := asn1.Unmarshal(e.Value, &cdp) if err != nil { return nil, err } for _, dp := range cdp { var n asn1.RawValue _, err = asn1.Unmarshal(dp.DistributionPoint.FullName.Bytes, &n) if err != nil { return nil, err } if n.Tag == 6 { out.CRLDistributionPoints = append(out.CRLDistributionPoints, string(n.Bytes)) } } continue case 35: // RFC 5280, 4.2.1.1 var a authKeyId _, err = asn1.Unmarshal(e.Value, &a) if err != nil { return nil, err } out.AuthorityKeyId = a.Id continue case 37: // RFC 5280, 4.2.1.12. Extended Key Usage // id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 } // // ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId // // KeyPurposeId ::= OBJECT IDENTIFIER var keyUsage []asn1.ObjectIdentifier _, err = asn1.Unmarshal(e.Value, &keyUsage) if err != nil { return nil, err } for _, u := range keyUsage { if extKeyUsage, ok := extKeyUsageFromOID(u); ok { out.ExtKeyUsage = append(out.ExtKeyUsage, extKeyUsage) } else { out.UnknownExtKeyUsage = append(out.UnknownExtKeyUsage, u) } } continue case 14: // RFC 5280, 4.2.1.2 var keyid []byte _, err = asn1.Unmarshal(e.Value, &keyid) if err != nil { return nil, err } out.SubjectKeyId = keyid continue case 32: // RFC 5280 4.2.1.4: Certificate Policies var policies []policyInformation if _, err = asn1.Unmarshal(e.Value, &policies); err != nil { return nil, err } out.PolicyIdentifiers = make([]asn1.ObjectIdentifier, len(policies)) for i, policy := range policies { out.PolicyIdentifiers[i] = policy.Policy } } } else if e.Id.Equal(oidExtensionAuthorityInfoAccess) { // RFC 5280 4.2.2.1: Authority Information Access var aia []authorityInfoAccess if _, err = asn1.Unmarshal(e.Value, &aia); err != nil { return nil, err } for _, v := range aia { // GeneralName: uniformResourceIdentifier [6] IA5String if v.Location.Tag != 6 { continue } if v.Method.Equal(oidAuthorityInfoAccessOcsp) { out.OCSPServer = append(out.OCSPServer, string(v.Location.Bytes)) } else if v.Method.Equal(oidAuthorityInfoAccessIssuers) { out.IssuingCertificateURL = append(out.IssuingCertificateURL, string(v.Location.Bytes)) } } } if e.Critical { // START CT CHANGES nfe.AddError(UnhandledCriticalExtension{e.Id}) // END CT CHANGES } } // START CT CHANGES if nfe.HasError() { return out, nfe } // END CT CHANGES return out, nil } // START CT CHANGES // ParseTBSCertificate parses a single TBSCertificate from the given ASN.1 DER data. // The parsed data is returned in a Certificate struct for ease of access. func ParseTBSCertificate(asn1Data []byte) (*Certificate, error) { var tbsCert tbsCertificate rest, err := asn1.Unmarshal(asn1Data, &tbsCert) if err != nil { return nil, err } if len(rest) > 0 { return nil, asn1.SyntaxError{Msg: "trailing data"} } return parseCertificate(&certificate{ Raw: tbsCert.Raw, TBSCertificate: tbsCert}) } // END CT CHANGES // ParseCertificate parses a single certificate from the given ASN.1 DER data. func ParseCertificate(asn1Data []byte) (*Certificate, error) { var cert certificate rest, err := asn1.Unmarshal(asn1Data, &cert) if err != nil { return nil, err } if len(rest) > 0 { return nil, asn1.SyntaxError{Msg: "trailing data"} } return parseCertificate(&cert) } // ParseCertificates parses one or more certificates from the given ASN.1 DER // data. The certificates must be concatenated with no intermediate padding. func ParseCertificates(asn1Data []byte) ([]*Certificate, error) { var v []*certificate for len(asn1Data) > 0 { cert := new(certificate) var err error asn1Data, err = asn1.Unmarshal(asn1Data, cert) if err != nil { return nil, err } v = append(v, cert) } ret := make([]*Certificate, len(v)) for i, ci := range v { cert, err := parseCertificate(ci) if err != nil { return nil, err } ret[i] = cert } return ret, nil } func reverseBitsInAByte(in byte) byte { b1 := in>>4 | in<<4 b2 := b1>>2&0x33 | b1<<2&0xcc b3 := b2>>1&0x55 | b2<<1&0xaa return b3 } var ( oidExtensionSubjectKeyId = []int{2, 5, 29, 14} oidExtensionKeyUsage = []int{2, 5, 29, 15} oidExtensionExtendedKeyUsage = []int{2, 5, 29, 37} oidExtensionAuthorityKeyId = []int{2, 5, 29, 35} oidExtensionBasicConstraints = []int{2, 5, 29, 19} oidExtensionSubjectAltName = []int{2, 5, 29, 17} oidExtensionCertificatePolicies = []int{2, 5, 29, 32} oidExtensionNameConstraints = []int{2, 5, 29, 30} oidExtensionCRLDistributionPoints = []int{2, 5, 29, 31} oidExtensionAuthorityInfoAccess = []int{1, 3, 6, 1, 5, 5, 7, 1, 1} ) var ( oidAuthorityInfoAccessOcsp = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 48, 1} oidAuthorityInfoAccessIssuers = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 48, 2} ) // oidNotInExtensions returns whether an extension with the given oid exists in // extensions. func oidInExtensions(oid asn1.ObjectIdentifier, extensions []pkix.Extension) bool { for _, e := range extensions { if e.Id.Equal(oid) { return true } } return false } func buildExtensions(template *Certificate) (ret []pkix.Extension, err error) { ret = make([]pkix.Extension, 10 /* maximum number of elements. */) n := 0 if template.KeyUsage != 0 && !oidInExtensions(oidExtensionKeyUsage, template.ExtraExtensions) { ret[n].Id = oidExtensionKeyUsage ret[n].Critical = true var a [2]byte a[0] = reverseBitsInAByte(byte(template.KeyUsage)) a[1] = reverseBitsInAByte(byte(template.KeyUsage >> 8)) l := 1 if a[1] != 0 { l = 2 } ret[n].Value, err = asn1.Marshal(asn1.BitString{Bytes: a[0:l], BitLength: l * 8}) if err != nil { return } n++ } if (len(template.ExtKeyUsage) > 0 || len(template.UnknownExtKeyUsage) > 0) && !oidInExtensions(oidExtensionExtendedKeyUsage, template.ExtraExtensions) { ret[n].Id = oidExtensionExtendedKeyUsage var oids []asn1.ObjectIdentifier for _, u := range template.ExtKeyUsage { if oid, ok := oidFromExtKeyUsage(u); ok { oids = append(oids, oid) } else { panic("internal error") } } oids = append(oids, template.UnknownExtKeyUsage...) ret[n].Value, err = asn1.Marshal(oids) if err != nil { return } n++ } if template.BasicConstraintsValid && !oidInExtensions(oidExtensionBasicConstraints, template.ExtraExtensions) { ret[n].Id = oidExtensionBasicConstraints ret[n].Value, err = asn1.Marshal(basicConstraints{template.IsCA, template.MaxPathLen}) ret[n].Critical = true if err != nil { return } n++ } if len(template.SubjectKeyId) > 0 && !oidInExtensions(oidExtensionSubjectKeyId, template.ExtraExtensions) { ret[n].Id = oidExtensionSubjectKeyId ret[n].Value, err = asn1.Marshal(template.SubjectKeyId) if err != nil { return } n++ } if len(template.AuthorityKeyId) > 0 && !oidInExtensions(oidExtensionAuthorityKeyId, template.ExtraExtensions) { ret[n].Id = oidExtensionAuthorityKeyId ret[n].Value, err = asn1.Marshal(authKeyId{template.AuthorityKeyId}) if err != nil { return } n++ } if (len(template.OCSPServer) > 0 || len(template.IssuingCertificateURL) > 0) && !oidInExtensions(oidExtensionAuthorityInfoAccess, template.ExtraExtensions) { ret[n].Id = oidExtensionAuthorityInfoAccess var aiaValues []authorityInfoAccess for _, name := range template.OCSPServer { aiaValues = append(aiaValues, authorityInfoAccess{ Method: oidAuthorityInfoAccessOcsp, Location: asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)}, }) } for _, name := range template.IssuingCertificateURL { aiaValues = append(aiaValues, authorityInfoAccess{ Method: oidAuthorityInfoAccessIssuers, Location: asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)}, }) } ret[n].Value, err = asn1.Marshal(aiaValues) if err != nil { return } n++ } if (len(template.DNSNames) > 0 || len(template.EmailAddresses) > 0 || len(template.IPAddresses) > 0) && !oidInExtensions(oidExtensionSubjectAltName, template.ExtraExtensions) { ret[n].Id = oidExtensionSubjectAltName var rawValues []asn1.RawValue for _, name := range template.DNSNames { rawValues = append(rawValues, asn1.RawValue{Tag: 2, Class: 2, Bytes: []byte(name)}) } for _, email := range template.EmailAddresses { rawValues = append(rawValues, asn1.RawValue{Tag: 1, Class: 2, Bytes: []byte(email)}) } for _, rawIP := range template.IPAddresses { // If possible, we always want to encode IPv4 addresses in 4 bytes. ip := rawIP.To4() if ip == nil { ip = rawIP } rawValues = append(rawValues, asn1.RawValue{Tag: 7, Class: 2, Bytes: ip}) } ret[n].Value, err = asn1.Marshal(rawValues) if err != nil { return } n++ } if len(template.PolicyIdentifiers) > 0 && !oidInExtensions(oidExtensionCertificatePolicies, template.ExtraExtensions) { ret[n].Id = oidExtensionCertificatePolicies policies := make([]policyInformation, len(template.PolicyIdentifiers)) for i, policy := range template.PolicyIdentifiers { policies[i].Policy = policy } ret[n].Value, err = asn1.Marshal(policies) if err != nil { return } n++ } if len(template.PermittedDNSDomains) > 0 && !oidInExtensions(oidExtensionNameConstraints, template.ExtraExtensions) { ret[n].Id = oidExtensionNameConstraints ret[n].Critical = template.PermittedDNSDomainsCritical var out nameConstraints out.Permitted = make([]generalSubtree, len(template.PermittedDNSDomains)) for i, permitted := range template.PermittedDNSDomains { out.Permitted[i] = generalSubtree{Name: permitted} } ret[n].Value, err = asn1.Marshal(out) if err != nil { return } n++ } if len(template.CRLDistributionPoints) > 0 && !oidInExtensions(oidExtensionCRLDistributionPoints, template.ExtraExtensions) { ret[n].Id = oidExtensionCRLDistributionPoints var crlDp []distributionPoint for _, name := range template.CRLDistributionPoints { rawFullName, _ := asn1.Marshal(asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)}) dp := distributionPoint{ DistributionPoint: distributionPointName{ FullName: asn1.RawValue{Tag: 0, Class: 2, Bytes: rawFullName}, }, } crlDp = append(crlDp, dp) } ret[n].Value, err = asn1.Marshal(crlDp) if err != nil { return } n++ } // Adding another extension here? Remember to update the maximum number // of elements in the make() at the top of the function. return append(ret[:n], template.ExtraExtensions...), nil } func subjectBytes(cert *Certificate) ([]byte, error) { if len(cert.RawSubject) > 0 { return cert.RawSubject, nil } return asn1.Marshal(cert.Subject.ToRDNSequence()) } // CreateCertificate creates a new certificate based on a template. The // following members of template are used: SerialNumber, Subject, NotBefore, // NotAfter, KeyUsage, ExtKeyUsage, UnknownExtKeyUsage, BasicConstraintsValid, // IsCA, MaxPathLen, SubjectKeyId, DNSNames, PermittedDNSDomainsCritical, // PermittedDNSDomains. // // The certificate is signed by parent. If parent is equal to template then the // certificate is self-signed. The parameter pub is the public key of the // signee and priv is the private key of the signer. // // The returned slice is the certificate in DER encoding. // // The only supported key types are RSA and ECDSA (*rsa.PublicKey or // *ecdsa.PublicKey for pub, *rsa.PrivateKey or *ecdsa.PublicKey for priv). func CreateCertificate(rand io.Reader, template, parent *Certificate, pub interface{}, priv interface{}) (cert []byte, err error) { var publicKeyBytes []byte var publicKeyAlgorithm pkix.AlgorithmIdentifier if publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(pub); err != nil { return nil, err } var signatureAlgorithm pkix.AlgorithmIdentifier var hashFunc crypto.Hash switch priv := priv.(type) { case *rsa.PrivateKey: signatureAlgorithm.Algorithm = oidSignatureSHA1WithRSA hashFunc = crypto.SHA1 case *ecdsa.PrivateKey: switch priv.Curve { case elliptic.P224(), elliptic.P256(): hashFunc = crypto.SHA256 signatureAlgorithm.Algorithm = oidSignatureECDSAWithSHA256 case elliptic.P384(): hashFunc = crypto.SHA384 signatureAlgorithm.Algorithm = oidSignatureECDSAWithSHA384 case elliptic.P521(): hashFunc = crypto.SHA512 signatureAlgorithm.Algorithm = oidSignatureECDSAWithSHA512 default: return nil, errors.New("x509: unknown elliptic curve") } default: return nil, errors.New("x509: only RSA and ECDSA private keys supported") } if err != nil { return } if len(parent.SubjectKeyId) > 0 { template.AuthorityKeyId = parent.SubjectKeyId } extensions, err := buildExtensions(template) if err != nil { return } asn1Issuer, err := subjectBytes(parent) if err != nil { return } asn1Subject, err := subjectBytes(template) if err != nil { return } encodedPublicKey := asn1.BitString{BitLength: len(publicKeyBytes) * 8, Bytes: publicKeyBytes} c := tbsCertificate{ Version: 2, SerialNumber: template.SerialNumber, SignatureAlgorithm: signatureAlgorithm, Issuer: asn1.RawValue{FullBytes: asn1Issuer}, Validity: validity{template.NotBefore.UTC(), template.NotAfter.UTC()}, Subject: asn1.RawValue{FullBytes: asn1Subject}, PublicKey: publicKeyInfo{nil, publicKeyAlgorithm, encodedPublicKey}, Extensions: extensions, } tbsCertContents, err := asn1.Marshal(c) if err != nil { return } c.Raw = tbsCertContents h := hashFunc.New() h.Write(tbsCertContents) digest := h.Sum(nil) var signature []byte switch priv := priv.(type) { case *rsa.PrivateKey: signature, err = rsa.SignPKCS1v15(rand, priv, hashFunc, digest) case *ecdsa.PrivateKey: var r, s *big.Int if r, s, err = ecdsa.Sign(rand, priv, digest); err == nil { signature, err = asn1.Marshal(ecdsaSignature{r, s}) } default: panic("internal error") } if err != nil { return } cert, err = asn1.Marshal(certificate{ nil, c, signatureAlgorithm, asn1.BitString{Bytes: signature, BitLength: len(signature) * 8}, }) return } // pemCRLPrefix is the magic string that indicates that we have a PEM encoded // CRL. var pemCRLPrefix = []byte("-----BEGIN X509 CRL") // pemType is the type of a PEM encoded CRL. var pemType = "X509 CRL" // ParseCRL parses a CRL from the given bytes. It's often the case that PEM // encoded CRLs will appear where they should be DER encoded, so this function // will transparently handle PEM encoding as long as there isn't any leading // garbage. func ParseCRL(crlBytes []byte) (certList *pkix.CertificateList, err error) { if bytes.HasPrefix(crlBytes, pemCRLPrefix) { block, _ := pem.Decode(crlBytes) if block != nil && block.Type == pemType { crlBytes = block.Bytes } } return ParseDERCRL(crlBytes) } // ParseDERCRL parses a DER encoded CRL from the given bytes. func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err error) { certList = new(pkix.CertificateList) _, err = asn1.Unmarshal(derBytes, certList) if err != nil { certList = nil } return } // CreateCRL returns a DER encoded CRL, signed by this Certificate, that // contains the given list of revoked certificates. // // The only supported key type is RSA (*rsa.PrivateKey for priv). func (c *Certificate) CreateCRL(rand io.Reader, priv interface{}, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error) { rsaPriv, ok := priv.(*rsa.PrivateKey) if !ok { return nil, errors.New("x509: non-RSA private keys not supported") } tbsCertList := pkix.TBSCertificateList{ Version: 2, Signature: pkix.AlgorithmIdentifier{ Algorithm: oidSignatureSHA1WithRSA, }, Issuer: c.Subject.ToRDNSequence(), ThisUpdate: now.UTC(), NextUpdate: expiry.UTC(), RevokedCertificates: revokedCerts, } tbsCertListContents, err := asn1.Marshal(tbsCertList) if err != nil { return } h := sha1.New() h.Write(tbsCertListContents) digest := h.Sum(nil) signature, err := rsa.SignPKCS1v15(rand, rsaPriv, crypto.SHA1, digest) if err != nil { return } return asn1.Marshal(pkix.CertificateList{ TBSCertList: tbsCertList, SignatureAlgorithm: pkix.AlgorithmIdentifier{ Algorithm: oidSignatureSHA1WithRSA, }, SignatureValue: asn1.BitString{Bytes: signature, BitLength: len(signature) * 8}, }) }