/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // #define VERBOSE_DEBUG #define LOG_TAG "Minikin" #include #include #include "unicode/unistr.h" #include "unicode/unorm2.h" #include "FontLanguage.h" #include "FontLanguageListCache.h" #include "MinikinInternal.h" #include using std::vector; namespace android { template static inline T max(T a, T b) { return a>b ? a : b; } uint32_t FontCollection::sNextId = 0; FontCollection::FontCollection(const vector& typefaces) : mMaxChar(0) { AutoMutex _l(gMinikinLock); mId = sNextId++; vector lastChar; size_t nTypefaces = typefaces.size(); #ifdef VERBOSE_DEBUG ALOGD("nTypefaces = %zd\n", nTypefaces); #endif const FontStyle defaultStyle; for (size_t i = 0; i < nTypefaces; i++) { FontFamily* family = typefaces[i]; MinikinFont* typeface = family->getClosestMatch(defaultStyle).font; if (typeface == NULL) { continue; } family->RefLocked(); const SparseBitSet* coverage = family->getCoverage(); if (coverage == nullptr) { family->UnrefLocked(); continue; } mFamilies.push_back(family); // emplace_back would be better if (family->hasVSTable()) { mVSFamilyVec.push_back(family); } mMaxChar = max(mMaxChar, coverage->length()); lastChar.push_back(coverage->nextSetBit(0)); } nTypefaces = mFamilies.size(); LOG_ALWAYS_FATAL_IF(nTypefaces == 0, "Font collection must have at least one valid typeface"); size_t nPages = (mMaxChar + kPageMask) >> kLogCharsPerPage; size_t offset = 0; // TODO: Use variation selector map for mRanges construction. // A font can have a glyph for a base code point and variation selector pair but no glyph for // the base code point without variation selector. The family won't be listed in the range in // this case. for (size_t i = 0; i < nPages; i++) { Range dummy; mRanges.push_back(dummy); Range* range = &mRanges.back(); #ifdef VERBOSE_DEBUG ALOGD("i=%zd: range start = %zd\n", i, offset); #endif range->start = offset; for (size_t j = 0; j < nTypefaces; j++) { if (lastChar[j] < (i + 1) << kLogCharsPerPage) { FontFamily* family = mFamilies[j]; mFamilyVec.push_back(family); offset++; uint32_t nextChar = family->getCoverage()->nextSetBit((i + 1) << kLogCharsPerPage); #ifdef VERBOSE_DEBUG ALOGD("nextChar = %d (j = %zd)\n", nextChar, j); #endif lastChar[j] = nextChar; } } range->end = offset; } } FontCollection::~FontCollection() { for (size_t i = 0; i < mFamilies.size(); i++) { mFamilies[i]->UnrefLocked(); } } // Special scores for the font fallback. const uint32_t kUnsupportedFontScore = 0; const uint32_t kFirstFontScore = UINT32_MAX; // Calculates a font score. // The score of the font family is based on three subscores. // - Coverage Score: How well the font family covers the given character or variation sequence. // - Language Score: How well the font family is appropriate for the language. // - Variant Score: Whether the font family matches the variant. Note that this variant is not the // one in BCP47. This is our own font variant (e.g., elegant, compact). // // Then, there is a priority for these three subscores as follow: // Coverage Score > Language Score > Variant Score // The returned score reflects this priority order. // // Note that there are two special scores. // - kUnsupportedFontScore: When the font family doesn't support the variation sequence or even its // base character. // - kFirstFontScore: When the font is the first font family in the collection and it supports the // given character or variation sequence. uint32_t FontCollection::calcFamilyScore(uint32_t ch, uint32_t vs, int variant, uint32_t langListId, FontFamily* fontFamily) const { const uint32_t coverageScore = calcCoverageScore(ch, vs, fontFamily); if (coverageScore == kFirstFontScore || coverageScore == kUnsupportedFontScore) { // No need to calculate other scores. return coverageScore; } const uint32_t languageScore = calcLanguageMatchingScore(langListId, *fontFamily); const uint32_t variantScore = calcVariantMatchingScore(variant, *fontFamily); // Subscores are encoded into 31 bits representation to meet the subscore priority. // The highest 2 bits are for coverage score, then following 28 bits are for language score, // then the last 1 bit is for variant score. return coverageScore << 29 | languageScore << 1 | variantScore; } // Calculates a font score based on variation sequence coverage. // - Returns kUnsupportedFontScore if the font doesn't support the variation sequence or its base // character. // - Returns kFirstFontScore if the font family is the first font family in the collection and it // supports the given character or variation sequence. // - Returns 3 if the font family supports the variation sequence. // - Returns 2 if the vs is a color variation selector (U+FE0F) and if the font is an emoji font. // - Returns 2 if the vs is a text variation selector (U+FE0E) and if the font is not an emoji font. // - Returns 1 if the variation selector is not specified or if the font family only supports the // variation sequence's base character. uint32_t FontCollection::calcCoverageScore(uint32_t ch, uint32_t vs, FontFamily* fontFamily) const { const bool hasVSGlyph = (vs != 0) && fontFamily->hasVariationSelector(ch, vs); if (!hasVSGlyph && !fontFamily->getCoverage()->get(ch)) { // The font doesn't support either variation sequence or even the base character. return kUnsupportedFontScore; } if ((vs == 0 || hasVSGlyph) && mFamilies[0] == fontFamily) { // If the first font family supports the given character or variation sequence, always use // it. return kFirstFontScore; } if (vs == 0) { return 1; } if (hasVSGlyph) { return 3; } if (vs == 0xFE0F || vs == 0xFE0E) { // TODO use all language in the list. const FontLanguage lang = FontLanguageListCache::getById(fontFamily->langId())[0]; const bool hasEmojiFlag = lang.hasEmojiFlag(); if (vs == 0xFE0F) { return hasEmojiFlag ? 2 : 1; } else { // vs == 0xFE0E return hasEmojiFlag ? 1 : 2; } } return 1; } // Calculates font scores based on the script matching and primary langauge matching. // // If the font's script doesn't support the requested script, the font gets a score of 0. If the // font's script supports the requested script and the font has the same primary language as the // requested one, the font gets a score of 2. If the font's script supports the requested script // but the primary language is different from the requested one, the font gets a score of 1. // // If two languages in the requested list have the same language score, the font matching with // higher priority language gets a higher score. For example, in the case the user requested // language list is "ja-Jpan,en-Latn". The score of for the font of "ja-Jpan" gets a higher score // than the font of "en-Latn". // // To achieve the above two conditions, the language score is determined as follows: // LanguageScore = s(0) * 3^(m - 1) + s(1) * 3^(m - 2) + ... + s(m - 2) * 3 + s(m - 1) // Here, m is the maximum number of languages to be compared, and s(i) is the i-th language's // matching score. The possible values of s(i) are 0, 1 and 2. uint32_t FontCollection::calcLanguageMatchingScore( uint32_t userLangListId, const FontFamily& fontFamily) { const FontLanguages& langList = FontLanguageListCache::getById(userLangListId); // TODO use all language in the list. FontLanguage fontLanguage = FontLanguageListCache::getById(fontFamily.langId())[0]; const size_t maxCompareNum = std::min(langList.size(), FONT_LANGUAGES_LIMIT); uint32_t score = fontLanguage.getScoreFor(langList[0]); // maxCompareNum can't be zero. for (size_t i = 1; i < maxCompareNum; ++i) { score = score * 3u + fontLanguage.getScoreFor(langList[i]); } return score; } // Calculates a font score based on variant ("compact" or "elegant") matching. // - Returns 1 if the font doesn't have variant or the variant matches with the text style. // - No score if the font has a variant but it doesn't match with the text style. uint32_t FontCollection::calcVariantMatchingScore(int variant, const FontFamily& fontFamily) { return (fontFamily.variant() == 0 || fontFamily.variant() == variant) ? 1 : 0; } // Implement heuristic for choosing best-match font. Here are the rules: // 1. If first font in the collection has the character, it wins. // 2. Calculate a score for the font family. See comments in calcFamilyScore for the detail. // 3. Highest score wins, with ties resolved to the first font. FontFamily* FontCollection::getFamilyForChar(uint32_t ch, uint32_t vs, uint32_t langListId, int variant) const { if (ch >= mMaxChar) { return NULL; } const std::vector* familyVec = &mFamilyVec; Range range = mRanges[ch >> kLogCharsPerPage]; std::vector familyVecForVS; if (vs != 0) { // If variation selector is specified, need to search for both the variation sequence and // its base codepoint. Compute the union vector of them. familyVecForVS = mVSFamilyVec; familyVecForVS.insert(familyVecForVS.end(), mFamilyVec.begin() + range.start, mFamilyVec.begin() + range.end); std::sort(familyVecForVS.begin(), familyVecForVS.end()); auto last = std::unique(familyVecForVS.begin(), familyVecForVS.end()); familyVecForVS.erase(last, familyVecForVS.end()); familyVec = &familyVecForVS; range = { 0, familyVecForVS.size() }; } #ifdef VERBOSE_DEBUG ALOGD("querying range %zd:%zd\n", range.start, range.end); #endif FontFamily* bestFamily = nullptr; uint32_t bestScore = kUnsupportedFontScore; for (size_t i = range.start; i < range.end; i++) { FontFamily* family = (*familyVec)[i]; const uint32_t score = calcFamilyScore(ch, vs, variant, langListId, family); if (score == kFirstFontScore) { // If the first font family supports the given character or variation sequence, always // use it. return family; } if (score > bestScore) { bestScore = score; bestFamily = family; } } if (bestFamily == nullptr && !mFamilyVec.empty()) { UErrorCode errorCode = U_ZERO_ERROR; const UNormalizer2* normalizer = unorm2_getNFDInstance(&errorCode); if (U_SUCCESS(errorCode)) { UChar decomposed[4]; int len = unorm2_getRawDecomposition(normalizer, ch, decomposed, 4, &errorCode); if (U_SUCCESS(errorCode) && len > 0) { int off = 0; U16_NEXT_UNSAFE(decomposed, off, ch); return getFamilyForChar(ch, vs, langListId, variant); } } bestFamily = mFamilies[0]; } return bestFamily; } const uint32_t NBSP = 0xa0; const uint32_t ZWJ = 0x200c; const uint32_t ZWNJ = 0x200d; const uint32_t KEYCAP = 0x20e3; const uint32_t HYPHEN = 0x2010; const uint32_t NB_HYPHEN = 0x2011; // Characters where we want to continue using existing font run instead of // recomputing the best match in the fallback list. static const uint32_t stickyWhitelist[] = { '!', ',', '-', '.', ':', ';', '?', NBSP, ZWJ, ZWNJ, KEYCAP, HYPHEN, NB_HYPHEN }; static bool isStickyWhitelisted(uint32_t c) { for (size_t i = 0; i < sizeof(stickyWhitelist) / sizeof(stickyWhitelist[0]); i++) { if (stickyWhitelist[i] == c) return true; } return false; } static bool isVariationSelector(uint32_t c) { return (0xFE00 <= c && c <= 0xFE0F) || (0xE0100 <= c && c <= 0xE01EF); } bool FontCollection::hasVariationSelector(uint32_t baseCodepoint, uint32_t variationSelector) const { if (!isVariationSelector(variationSelector)) { return false; } if (baseCodepoint >= mMaxChar) { return false; } if (variationSelector == 0) { return false; } // Currently mRanges can not be used here since it isn't aware of the variation sequence. for (size_t i = 0; i < mVSFamilyVec.size(); i++) { AutoMutex _l(gMinikinLock); if (mVSFamilyVec[i]->hasVariationSelector(baseCodepoint, variationSelector)) { return true; } } return false; } void FontCollection::itemize(const uint16_t *string, size_t string_size, FontStyle style, vector* result) const { const uint32_t langListId = style.getLanguageListId(); int variant = style.getVariant(); FontFamily* lastFamily = NULL; Run* run = NULL; if (string_size == 0) { return; } const uint32_t kEndOfString = 0xFFFFFFFF; uint32_t nextCh = 0; uint32_t prevCh = 0; size_t nextUtf16Pos = 0; size_t readLength = 0; U16_NEXT(string, readLength, string_size, nextCh); do { const uint32_t ch = nextCh; const size_t utf16Pos = nextUtf16Pos; nextUtf16Pos = readLength; if (readLength < string_size) { U16_NEXT(string, readLength, string_size, nextCh); } else { nextCh = kEndOfString; } bool shouldContinueRun = false; if (lastFamily != nullptr) { if (isStickyWhitelisted(ch)) { // Continue using existing font as long as it has coverage and is whitelisted shouldContinueRun = lastFamily->getCoverage()->get(ch); } else if (isVariationSelector(ch)) { // Always continue if the character is a variation selector. shouldContinueRun = true; } } if (!shouldContinueRun) { FontFamily* family = getFamilyForChar(ch, isVariationSelector(nextCh) ? nextCh : 0, langListId, variant); if (utf16Pos == 0 || family != lastFamily) { size_t start = utf16Pos; // Workaround for Emoji keycap until we implement per-cluster font // selection: if keycap is found in a different font that also // supports previous char, attach previous char to the new run. // Bug 7557244. if (ch == KEYCAP && utf16Pos != 0 && family && family->getCoverage()->get(prevCh)) { const size_t prevChLength = U16_LENGTH(prevCh); run->end -= prevChLength; if (run->start == run->end) { result->pop_back(); } start -= prevChLength; } Run dummy; result->push_back(dummy); run = &result->back(); if (family == NULL) { run->fakedFont.font = NULL; } else { run->fakedFont = family->getClosestMatch(style); } lastFamily = family; run->start = start; } } prevCh = ch; run->end = nextUtf16Pos; // exclusive } while (nextCh != kEndOfString); } MinikinFont* FontCollection::baseFont(FontStyle style) { return baseFontFaked(style).font; } FakedFont FontCollection::baseFontFaked(FontStyle style) { if (mFamilies.empty()) { return FakedFont(); } return mFamilies[0]->getClosestMatch(style); } uint32_t FontCollection::getId() const { return mId; } } // namespace android