diff --git "a/Day66-70/66.\346\225\260\346\215\256\345\210\206\346\236\220\346\246\202\350\277\260.md" "b/Day66-70/66.\346\225\260\346\215\256\345\210\206\346\236\220\346\246\202\350\277\260.md" index 1f056090dc98f4e2d1ce4b0c5d453e23fe71c3f0..0e421c102592c47ab3779d24044b6ec34f575c1f 100644 --- "a/Day66-70/66.\346\225\260\346\215\256\345\210\206\346\236\220\346\246\202\350\277\260.md" +++ "b/Day66-70/66.\346\225\260\346\215\256\345\210\206\346\236\220\346\246\202\350\277\260.md" @@ -212,6 +212,8 @@ Notebook是基于网页的用于交互计算的应用程序,可以用于代码 ### 补充知识 +> **温馨提示**:GitHub默认不支持对Markdown文档中数学公式的渲染,可以为你的浏览器安装一个名为 + #### 描述型统计 1. 集中趋势 @@ -226,15 +228,15 @@ Notebook是基于网页的用于交互计算的应用程序,可以用于代码 - **分位数**:将一个随机变量的概率分布范围分为几个具有相同概率的连续区间,比如最常见的中位数(二分位数,median),就是将数据集划分为数量相等的上下两个部分。除此之外,常见的分位数还有四分位数(quartile)、百分位数(percentile)等。 - - 中位数:$${Q}_{\frac {1}{2}}(x)={\begin{cases}x'_{\frac{n+1}{2}},&{n \mbox{ is odd}}\\{\frac {1}{2}}(x'_{\frac{n}{2}}+x'_{{\frac{n}{2}}+1}),&{n \mbox{ is even}}\end{cases}}$$ + - 中位数:${Q}_{\frac{1}{2}}(x)={\begin{cases}x_{\frac{n+1}{2}},&{n \mbox{ is odd}}\\(x_{\frac{n}{2}}+x_{{\frac{n}{2}}+1})/2,&{n \mbox{ is even}}\end{cases}}$ - 四分位数: - **第一四分位数****($Q_1$),又称**较小四分位数**或**下四分位数**,等于该样本中所有数值由小到大排列后第25%的数字。** + **第一四分位数**($Q_1$),又称**较小四分位数**或**下四分位数**,等于该样本中所有数值由小到大排列后第25%的数字。 **第二四分位数**($Q_2$),又称**中位数**,等于该样本中所有数值由小到大排列后第50%的数字。 - 第三四分位数**($Q_3$),又称**较大四分位数**或**上四分位数**,等于该样本中所有数值由小到大排列后第75%的数字。** + **第三四分位数**($Q_3$),又称**较大四分位数**或**上四分位数**,等于该样本中所有数值由小到大排列后第75%的数字。 **四分位距离**($IQR$,Inter-Quartile Range),即$Q_3-Q_1$的值。 @@ -274,9 +276,9 @@ Notebook是基于网页的用于交互计算的应用程序,可以用于代码 - 泊松分布(poisson distribution):适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等。泊松分布的概率质量函数为:$P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}$,泊松分布的参数$\lambda$是单位时间(或单位面积)内随机事件的平均发生率。 - 连续型分布: - - 均匀分布(uniform distribution):如果连续型随机变量$X$具有概率密度函数$f(x)=\left\{{\begin{matrix}{\frac{1}{b-a}}&{a \leq x \leq b},\\0&{\mbox{elsewhere}}.\end{matrix}}\right.$,则称$X$服从$[a,b]$上的均匀分布,记作$X\sim U[a,b]$。 - - 指数分布(exponential distribution):如果连续型随机变量$X$具有概率密度函数$f(x)=\left\{\begin{matrix} \lambda e^{-\lambda x}&x \ge 0, \\ 0 & x \lt 0. \end{matrix}\right.$,则称$X$服从参数为$\lambda$的指数分布,记为$X \sim Exp(\lambda)$。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、客服中心接入电话的时间间隔、知乎上出现新问题的时间间隔等等。指数分布的一个重要特征是无记忆性(无后效性),这表示如果一个随机变量呈指数分布,它的条件概率遵循:$P(T \gt s+t \ | \ T \gt t)=P(T \gt s) \ \ \forall s,t \ge 0$。 - - 正态分布(normal distribution):又名**高斯分布**(Gaussian distribution),是一个非常常见的连续概率分布,经常用自然科学和社会科学中来代表一个不明的随机变量。若随机变量$X$服从一个位置参数为$\mu$、尺度参数为$\sigma$的正态分布,记为$X \sim N(\mu,\sigma^2)$,其概率密度函数为:$\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {\left(x-\mu \right)^{2}}{2\sigma ^{2}}}}$。 + - 均匀分布(uniform distribution):如果连续型随机变量$X$具有概率密度函数$f(x)=\left\{{\begin{matrix}{\frac{1}{b-a}} &{a \leq x \leq b}\\ 0 &{\mbox{other}}\end{matrix}}\right.$,则称$X$服从$[a,b]$上的均匀分布,记作$X\sim U[a,b]$。 + - 指数分布(exponential distribution):如果连续型随机变量$X$具有概率密度函数$f(x)=\left\{\begin{matrix} \lambda e^{- \lambda x}&{x \ge 0} \\0 &{x \lt 0}\end{matrix}\right.$,则称$X$服从参数为$\lambda$的指数分布,记为$X \sim Exp(\lambda)$。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、客服中心接入电话的时间间隔、知乎上出现新问题的时间间隔等等。指数分布的一个重要特征是无记忆性(无后效性),这表示如果一个随机变量呈指数分布,它的条件概率遵循:$P(T \gt s+t \ | \ T \gt t)=P(T \gt s) \ \ \forall s,t \ge 0$。 + - 正态分布(normal distribution):又名**高斯分布**(Gaussian distribution),是一个非常常见的连续概率分布,经常用自然科学和社会科学中来代表一个不明的随机变量。若随机变量$X$服从一个位置参数为$\mu$、尺度参数为$\sigma$的正态分布,记为$X \sim N(\mu,\sigma^2)$,其概率密度函数为:$\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {\left(x-\mu \right)^{2}}{2\sigma ^{2}}}}$。 - 伽马分布(gamma distribution):假设$X_1, X_2, ... X_n$为连续发生事件的等候时间,且这$n$次等候时间为独立的,那么这$n$次等候时间之和$Y$($Y=X_1+X_2+...+X_n$)服从伽玛分布,即$Y \sim \Gamma(\alpha,\beta)$,其中$\alpha=n, \beta=\lambda$,这里的$\lambda$是连续发生事件的平均发生频率。 - 卡方分布(chi-square distribution):若$k$个随机变量$Z_1,Z_2,...,Z_k$是相互独立且符合标准正态分布(数学期望为0,方差为1)的随机变量,则随机变量$Z$的平方和$X=\sum_{i=1}^{k}Z_i^2$被称为服从自由度为$k$的卡方分布,记为$X \sim \chi^2(k)$。