/** ********************************************************************************* * * @file ald_spi.c * @brief SPI module driver. * This file provides firmware functions to manage the following * functionalities of SPI peripheral: * + Initialization functions * + IO operation functions * + Peripheral Control functions * + Peripheral State functions * * @version V1.0 * @date 13 Nov 2017 * @author AE Team * @note * * Copyright (C) Shanghai Eastsoft Microelectronics Co. Ltd. All rights reserved. * ********************************************************************************* @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] The SPI driver can be used as follows: (#) Declare a spi_handle_t structure, for example: spi_handle_t hperh; (#) Initialize the SPI low level resources: (##) Enable the SPIx interface clock (##) SPI pins configuration (+++) Enable the clock for the SPI GPIOs (+++) Configure these SPI pins as push-pull (##) NVIC configuration if you need to use interrupt process by implementing the ald_mcu_irq_config() API. Invoked ald_spi_irq_handler() function in SPI-IRQ function (##) DMA Configuration if you need to use DMA process (+++) Define ALD_DMA in ald_conf.h (+++) Enable the DMAx clock (#) Program the Mode, Direction , Data size, Baudrate Prescaler, NSS management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure. (#) Initialize the SPI module by invoking the ald_spi_init() API. [..] Circular mode restriction: (#) The DMA circular mode cannot be used when the SPI is configured in these modes: (##) Master 2Lines RxOnly (##) Master 1Line Rx (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs the ald_spi_dma_pause()/ ald_spi_dma_stop(). * @endverbatim */ #include "ald_spi.h" /** @addtogroup ES32FXXX_ALD * @{ */ /** @defgroup SPI SPI * @brief SPI module driver * @{ */ #ifdef ALD_SPI /** @addtogroup SPI_Private_Functions SPI Private Functions * @{ */ static ald_status_t spi_wait_flag(spi_handle_t *hperh, spi_flag_t flag, flag_status_t status, uint32_t timeout); static ald_status_t spi_wait_flag_irq(spi_handle_t *hperh, spi_flag_t flag, flag_status_t status, uint32_t timeout); static void __spi_send_by_it(spi_handle_t *hperh); static void __spi_recv_by_it(spi_handle_t *hperh); static void __spi_send_recv_by_it(spi_handle_t *hperh, spi_sr_status_t status); #ifdef ALD_DMA static void spi_dma_send_cplt(void *arg); static void spi_dma_recv_cplt(void *arg); static void spi_dma_send_recv_cplt(void *arg); static void spi_dma_error(void *arg); #endif /** * @} */ /** @defgroup SPI_Public_Functions SPI Public Functions * @{ */ /** @defgroup SPI_Public_Functions_Group1 Initialization functions * @brief Initialization and Configuration functions * * @verbatim =============================================================================== ##### Initialization and de-initialization functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to initialize and reset the SPIx peripheral: (+) User must configure all related peripherals resources (CLOCK, GPIO, DMA, NVIC). (+) Call the function ald_spi_init() to configure the selected device with the selected configuration: (++) Mode (++) Direction (++) Data Size (++) Clock Polarity and Phase (++) NSS Management (++) BaudRate Prescaler (++) FirstBit (++) TIMode (++) CRC Calculation (++) CRC Polynomial if CRC enabled (+) Call the function ald_spi_reset() to reset the selected SPIx periperal. @endverbatim * @{ */ /** * @brief Reset the SPI peripheral. * @param hperh: Pointer to a spi_handle_t structure that contains * the configuration information for the specified SPI module. * @retval None */ void ald_spi_reset(spi_handle_t *hperh) { hperh->perh->CON1 = 0x0; hperh->perh->CON2 = 0x0; hperh->perh->CRCPOLY = 0x00000007; SPI_RESET_HANDLE_STATE(hperh); __UNLOCK(hperh); return; } /** * @brief Initializes the SPI mode according to the specified parameters in * the SPI_init_t and create the associated handle. * @param hperh: Pointer to a spi_handle_t structure that contains * the configuration information for the specified SPI module. * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_init(spi_handle_t *hperh) { uint32_t tmp = 0; assert_param(IS_SPI(hperh->perh)); assert_param(IS_SPI_MODE(hperh->init.mode)); assert_param(IS_SPI_DIRECTION(hperh->init.dir)); assert_param(IS_SPI_BAUD(hperh->init.baud)); assert_param(IS_FUNC_STATE(hperh->init.first_bit)); assert_param(IS_FUNC_STATE(hperh->init.ss_en)); assert_param(IS_FUNC_STATE(hperh->init.crc_calc)); assert_param(IS_SPI_DATASIZE(hperh->init.data_size)); assert_param(IS_SPI_CPHA(hperh->init.phase)); assert_param(IS_SPI_CPOL(hperh->init.polarity)); if (hperh == NULL) return ERROR; ald_spi_reset(hperh); tmp = hperh->perh->CON1; if (hperh->init.mode == SPI_MODE_MASTER) tmp |= 1 << SPI_CON1_SSOUT_POS; tmp |= ((hperh->init.phase << SPI_CON1_CPHA_POS) | (hperh->init.polarity << SPI_CON1_CPOL_POS) | (hperh->init.baud << SPI_CON1_BAUD_POSS) | (hperh->init.data_size << SPI_CON1_FLEN_POS) | (hperh->init.mode << SPI_CON1_MSTREN_POS) | (hperh->init.ss_en << SPI_CON1_SSEN_POS) | (hperh->init.first_bit << SPI_CON1_LSBFST_POS)); hperh->perh->CON1 = tmp; if (hperh->init.dir == SPI_DIRECTION_2LINES) { CLEAR_BIT(hperh->perh->CON1, SPI_CON1_BIDEN_MSK); CLEAR_BIT(hperh->perh->CON1, SPI_CON1_RXO_MSK); } else if (hperh->init.dir == SPI_DIRECTION_2LINES_RXONLY) { CLEAR_BIT(hperh->perh->CON1, SPI_CON1_BIDEN_MSK); SET_BIT(hperh->perh->CON1, SPI_CON1_RXO_MSK); } else { SET_BIT(hperh->perh->CON1, SPI_CON1_BIDEN_MSK); } /* configure CRC */ hperh->perh->CON1 |= (hperh->init.crc_calc << SPI_CON1_CRCEN_POS); hperh->perh->CRCPOLY = hperh->init.crc_poly; hperh->err_code = SPI_ERROR_NONE; hperh->state = SPI_STATE_READY; if (hperh->init.dir == SPI_DIRECTION_2LINES) SPI_ENABLE(hperh); return OK; } /** * @} */ /** @defgroup SPI_Public_Functions_Group2 IO operation functions * @brief SPI Transmit and Receive functions * * @verbatim ============================================================================== ##### IO operation functions ##### =============================================================================== This subsection provides a set of functions allowing to manage the SPI data transfers. [..] The SPI supports master or slave mode: (#) There are two modes of transfer: (++) Blocking mode: The communication is performed in polling mode. The ALD status of all data processing is returned by the same function after finishing transfer. (++) No-Blocking mode: The communication is performed using Interrupts or DMA, These APIs return the ALD status. The end of the data processing will be indicated through the dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when using DMA mode. The hperh->tx_cplt_cbk(), hperh->rx_cplt_cbk() and hperh->tx_rx_cplt_cbk() user callbacks will be executed respectivelly at the end of the transmit or Receive process The hperh->err_cbk() user callback will be executed when a communication error is detected (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA) exist for 1Line (simplex) and 2Lines (full duplex) modes. * @endverbatim * @{ */ /** * @brief transmit one byte fast in blocking mode. * @param hperh: Pointer to a spi_handle_t structure. * @param data: Data to be sent * @retval status: * - 0 Success * - -1 Failed */ int32_t ald_spi_send_byte_fast(spi_handle_t *hperh, uint8_t data) { uint16_t cnt = 2000, temp; hperh->perh->DATA = data; while (((hperh->perh->STAT & (1 << SPI_STAT_TXBE_POS)) == 0) && (--cnt)); cnt = 2000; while ((hperh->perh->STAT & (1 << SPI_STAT_RXBNE_POS)) == 0 && (--cnt)); temp = hperh->perh->DATA; UNUSED(temp); return cnt == 0 ? -1 : 0; } /** * @brief transmit one byte fast in blocking mode(1line). * @param hperh: Pointer to a spi_handle_t structure. * @param data: Data to be sent * @retval status: * - 0 Success * - -1 Failed */ int32_t ald_spi_send_byte_fast_1line(spi_handle_t *hperh, uint8_t data) { uint16_t cnt = 2000; hperh->perh->DATA = data; while (((hperh->perh->STAT & (1 << SPI_STAT_TXBE_POS)) == 0) && (--cnt)); return cnt == 0 ? -1 : 0; } /** * @brief Receive one byte fast in blocking mode. * @param hperh: Pointer to a spi_handle_t structure. * @retval Data. */ uint8_t ald_spi_recv_byte_fast(spi_handle_t *hperh) { uint16_t cnt = 2000; if (hperh->init.mode == SPI_MODE_MASTER) { hperh->perh->DATA = 0xFF; while (((hperh->perh->STAT & (1 << SPI_STAT_TXBE_POS)) == 0) && (--cnt)); } cnt = 2000; while (((hperh->perh->STAT & (1 << SPI_STAT_RXBNE_POS)) == 0) && (--cnt)); return (uint8_t)hperh->perh->DATA; } /** * @brief transmit an amount of data in blocking mode. * @param hperh: Pointer to a spi_handle_t structure. * @param buf: Pointer to data buffer * @param size: Amount of data to be sent * @param timeout: Timeout duration * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_send(spi_handle_t *hperh, uint8_t *buf, uint16_t size, uint32_t timeout) { assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY) return BUSY; if (buf == NULL || size == 0) return ERROR; __LOCK(hperh); hperh->state = SPI_STATE_BUSY_TX; hperh->err_code = SPI_ERROR_NONE; hperh->tx_buf = buf; hperh->tx_size = size; hperh->tx_count = size; hperh->rx_buf = NULL; hperh->rx_size = 0; hperh->rx_count = 0; if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); if (hperh->init.dir == SPI_DIRECTION_1LINE) SPI_1LINE_TX(hperh); if (READ_BIT(hperh->perh->CON1, SPI_CON1_SPIEN_MSK) == 0) SPI_ENABLE(hperh); if ((hperh->init.mode == SPI_MODE_SLAVER) || (hperh->tx_count == 1)) { if (hperh->init.data_size == SPI_DATA_SIZE_8) { hperh->perh->DATA = *hperh->tx_buf; ++hperh->tx_buf; --hperh->tx_count; } else { hperh->perh->DATA = (*(uint16_t *)hperh->tx_buf); hperh->tx_buf += 2; --hperh->tx_count; } } while (hperh->tx_count > 0) { if (spi_wait_flag(hperh, SPI_IF_TXBE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if (hperh->init.data_size == SPI_DATA_SIZE_8) { hperh->perh->DATA = *hperh->tx_buf; ++hperh->tx_buf; --hperh->tx_count; } else { hperh->perh->DATA = (*(uint16_t *)hperh->tx_buf); hperh->tx_buf += 2; --hperh->tx_count; } } if (hperh->init.crc_calc) SPI_CRCNEXT_ENABLE(hperh); if ((spi_wait_flag(hperh, SPI_IF_TXBE, SET, timeout) != OK) || (spi_wait_flag(hperh, SPI_IF_BUSY, RESET, timeout) != OK)) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if (hperh->init.dir == SPI_DIRECTION_2LINES) ald_spi_clear_flag_status(hperh, SPI_IF_OVE); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return OK; } /** * @brief Receive an amount of data in blocking mode. * @param hperh: Pointer to a spi_handle_t structure. * @param buf: Pointer to data buffer * @param size: Amount of data to be received * @param timeout: Timeout duration * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_recv(spi_handle_t *hperh, uint8_t *buf, uint16_t size, uint32_t timeout) { uint16_t temp; assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY) return BUSY; if (buf == NULL || size == 0) return ERROR; __LOCK(hperh); hperh->state = SPI_STATE_BUSY_RX; hperh->err_code = SPI_ERROR_NONE; hperh->rx_buf = buf; hperh->rx_size = size; hperh->rx_count = size; hperh->tx_buf = NULL; hperh->tx_size = 0; hperh->tx_count = 0; if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); if (hperh->init.dir == SPI_DIRECTION_1LINE_RX) SPI_1LINE_RX(hperh); if ((hperh->init.mode == SPI_MODE_MASTER) && (hperh->init.dir == SPI_DIRECTION_2LINES)) { __UNLOCK(hperh); hperh->state = SPI_STATE_READY; return ald_spi_send_recv(hperh, buf, buf, size, timeout); } if ((hperh->init.dir == SPI_DIRECTION_2LINES_RXONLY) || (hperh->init.dir == SPI_DIRECTION_1LINE_RX)) SPI_ENABLE(hperh); while (hperh->rx_count > 1) { if (spi_wait_flag(hperh, SPI_IF_RXBNE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if (hperh->init.data_size == SPI_DATA_SIZE_8) { *hperh->rx_buf = hperh->perh->DATA; ++hperh->rx_buf; --hperh->rx_count; } else { *(uint16_t *)hperh->rx_buf = hperh->perh->DATA; hperh->rx_buf += 2; --hperh->rx_count; } } if (hperh->init.crc_calc) SPI_CRCNEXT_ENABLE(hperh); if (spi_wait_flag(hperh, SPI_IF_RXBNE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if (hperh->init.data_size == SPI_DATA_SIZE_8) { *hperh->rx_buf = hperh->perh->DATA; ++hperh->rx_buf; --hperh->rx_count; } else { *(uint16_t *)hperh->rx_buf = hperh->perh->DATA; hperh->rx_buf += 2; --hperh->rx_count; } if (hperh->init.crc_calc) { if (spi_wait_flag(hperh, SPI_IF_RXBNE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } temp = hperh->perh->DATA; UNUSED(temp); } if ((hperh->init.crc_calc) && (ald_spi_get_flag_status(hperh, SPI_IF_CRCERR) != RESET)) { hperh->err_code |= SPI_ERROR_CRC; SPI_CRC_RESET(hperh); ald_spi_clear_flag_status(hperh, SPI_IF_CRCERR); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return ERROR; } hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return OK; } /** * @brief Full-Duplex Send receive an amount of data in full-duplex mode (blocking mode). * @param hperh: Pointer to a spi_handle_t structure. * @param tx_buf: Pointer to data transmitted buffer * @param rx_buf: Pointer to data received buffer * @param size: Amount of data to be sent * @param timeout: Timeout duration * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_send_recv(spi_handle_t *hperh, uint8_t *tx_buf, uint8_t *rx_buf, uint16_t size, uint32_t timeout) { uint16_t temp; assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY) return BUSY; if (hperh->init.dir != SPI_DIRECTION_2LINES) return ERROR; if (tx_buf == NULL || rx_buf == NULL || size == 0) return ERROR; __LOCK(hperh); hperh->state = SPI_STATE_BUSY_TX_RX; hperh->err_code = SPI_ERROR_NONE; hperh->tx_buf = tx_buf; hperh->tx_size = size; hperh->tx_count = size; hperh->rx_buf = rx_buf; hperh->rx_size = size; hperh->rx_count = size; if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); if ((hperh->init.mode == SPI_MODE_SLAVER) || ((hperh->init.mode == SPI_MODE_SLAVER) && (hperh->tx_size == 1))) { if (hperh->init.data_size == SPI_DATA_SIZE_8) { hperh->perh->DATA = *hperh->tx_buf; ++hperh->tx_buf; --hperh->tx_count; } else { hperh->perh->DATA = (*(uint16_t *)hperh->tx_buf); hperh->tx_buf += 2; --hperh->tx_count; } } if (hperh->tx_buf == 0) { if (hperh->init.crc_calc) SPI_CRCNEXT_ENABLE(hperh); if (spi_wait_flag(hperh, SPI_IF_TXBE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if (hperh->init.data_size == SPI_DATA_SIZE_8) { *hperh->rx_buf = hperh->perh->DATA; ++hperh->rx_buf; --hperh->rx_count; } else { (*(uint16_t *)hperh->rx_buf) = hperh->perh->DATA; hperh->rx_buf += 2; --hperh->rx_count; } } while (hperh->tx_count > 0) { if (spi_wait_flag(hperh, SPI_IF_TXBE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if (hperh->init.data_size == SPI_DATA_SIZE_8) { hperh->perh->DATA = *hperh->tx_buf; ++hperh->tx_buf; --hperh->tx_count; } else { hperh->perh->DATA = (*(uint16_t *)hperh->tx_buf); hperh->tx_buf += 2; --hperh->tx_count; } if ((hperh->tx_count == 0) && (hperh->init.crc_calc)) SPI_CRCNEXT_ENABLE(hperh); if (spi_wait_flag(hperh, SPI_IF_RXBNE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if (hperh->init.data_size == SPI_DATA_SIZE_8) { *hperh->rx_buf = hperh->perh->DATA; ++hperh->rx_buf; --hperh->rx_count; } else { (*(uint16_t *)hperh->rx_buf) = hperh->perh->DATA; hperh->rx_buf += 2; --hperh->rx_count; } } if (hperh->init.mode == SPI_MODE_SLAVER) { if (spi_wait_flag(hperh, SPI_IF_RXBNE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if (hperh->init.data_size == SPI_DATA_SIZE_8) { *hperh->rx_buf = hperh->perh->DATA; ++hperh->rx_buf; --hperh->rx_count; } else { (*(uint16_t *)hperh->rx_buf) = hperh->perh->DATA; hperh->rx_buf += 2; --hperh->rx_count; } } if (hperh->init.crc_calc) { if (spi_wait_flag(hperh, SPI_IF_RXBNE, SET, timeout) != OK) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } temp = hperh->perh->DATA; UNUSED(temp); } if ((spi_wait_flag(hperh, SPI_IF_BUSY, RESET, timeout) != OK)) { if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return TIMEOUT; } if ((hperh->init.crc_calc) && (ald_spi_get_flag_status(hperh, SPI_IF_CRCERR) != RESET)) { hperh->err_code |= SPI_ERROR_CRC; SPI_CRC_RESET(hperh); ald_spi_clear_flag_status(hperh, SPI_IF_CRCERR); hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return ERROR; } hperh->state = SPI_STATE_READY; __UNLOCK(hperh); return OK; } /** * @brief Wraps up transmission in non blocking mode. * @param hperh: pointer to a spi_handle_t structure. * @param buf: Pointer to data transmitted buffer * @param size: Amount of data to be sent * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_send_by_it(spi_handle_t *hperh, uint8_t *buf, uint16_t size) { assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY) return BUSY; if (buf == NULL || size == 0) return ERROR; __LOCK(hperh); hperh->state = SPI_STATE_BUSY_TX; hperh->err_code = SPI_ERROR_NONE; hperh->tx_buf = buf; hperh->tx_size = size; hperh->tx_count = size; hperh->rx_buf = NULL; hperh->rx_size = 0; hperh->rx_count = 0; __UNLOCK(hperh); if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); if (hperh->init.dir == SPI_DIRECTION_1LINE) SPI_1LINE_TX(hperh); if (hperh->init.dir == SPI_DIRECTION_2LINES) { ald_spi_interrupt_config(hperh, SPI_IT_TXBE, ENABLE); } else { ald_spi_interrupt_config(hperh, SPI_IT_TXBE, ENABLE); ald_spi_interrupt_config(hperh, SPI_IT_ERR, ENABLE); } if (READ_BIT(hperh->perh->CON1, SPI_CON1_SPIEN_MSK) == 0) SPI_ENABLE(hperh); return OK; } /** * @brief Receives an amount of data in non blocking mode * @param hperh: Pointer to a spi_handle_t structure. * @param buf: Pointer to data received buffer * @param size: Amount of data to be sent * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_recv_by_it(spi_handle_t *hperh, uint8_t *buf, uint16_t size) { assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY) return BUSY; if (buf == NULL || size == 0) return ERROR; if ((hperh->init.dir == SPI_DIRECTION_2LINES) && (hperh->init.mode == SPI_MODE_MASTER)) return ERROR; /* Please call ald_spi_send_recv_by_it() */ __LOCK(hperh); hperh->state = SPI_STATE_BUSY_RX; hperh->err_code = SPI_ERROR_NONE; hperh->rx_buf = buf; hperh->rx_size = size; hperh->rx_count = size; hperh->tx_buf = NULL; hperh->tx_size = 0; hperh->tx_count = 0; __UNLOCK(hperh); if (hperh->init.dir == SPI_DIRECTION_1LINE_RX) SPI_1LINE_RX(hperh); if (hperh->init.crc_calc == ENABLE) SPI_CRC_RESET(hperh); ald_spi_interrupt_config(hperh, SPI_IT_RXBNE, ENABLE); ald_spi_interrupt_config(hperh, SPI_IT_ERR, ENABLE); if ((hperh->init.dir == SPI_DIRECTION_2LINES_RXONLY) || (hperh->init.dir == SPI_DIRECTION_1LINE_RX)) SPI_ENABLE(hperh); return OK; } /** * @brief Transmit and Receives an amount of data in non blocking mode * @param hperh: Pointer to a spi_handle_t structure that contains * the configuration information for the specified SPI module. * @param tx_buf: Pointer to data transmitted buffer * @param rx_buf: Pointer to data received buffer * @param size: Amount of data to be sent * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_send_recv_by_it(spi_handle_t *hperh, uint8_t *tx_buf, uint8_t *rx_buf, uint16_t size) { assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY) return BUSY; if (tx_buf == NULL || rx_buf == NULL || size == 0) return ERROR; __LOCK(hperh); hperh->state = SPI_STATE_BUSY_TX_RX; hperh->err_code = SPI_ERROR_NONE; hperh->tx_buf = tx_buf; hperh->tx_size = size; hperh->tx_count = size; hperh->rx_buf = rx_buf; hperh->rx_size = size; hperh->rx_count = size; __UNLOCK(hperh); if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); ald_spi_interrupt_config(hperh, SPI_IT_RXBNE, ENABLE); ald_spi_interrupt_config(hperh, SPI_IT_TXBE, ENABLE); ald_spi_interrupt_config(hperh, SPI_IT_ERR, ENABLE); return OK; } #ifdef ALD_DMA /** * @brief Transmit an amount of data used dma channel * @param hperh: Pointer to a spi_handle_t structure. * @param buf: Pointer to data buffer * @param size: Amount of data to be sent * @param channel: DMA channel as SPI transmit * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_send_by_dma(spi_handle_t *hperh, uint8_t *buf, uint16_t size, uint8_t channel) { assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY) return BUSY; if (buf == NULL || size == 0) return ERROR; __LOCK(hperh); hperh->state = SPI_STATE_BUSY_TX; hperh->err_code = SPI_ERROR_NONE; hperh->tx_buf = buf; hperh->tx_size = size; hperh->tx_count = size; hperh->rx_buf = NULL; hperh->rx_size = 0; hperh->rx_count = 0; if (hperh->init.dir == SPI_DIRECTION_1LINE) SPI_1LINE_TX(hperh); if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); if (hperh->hdmatx.perh == NULL) hperh->hdmatx.perh = DMA0; hperh->hdmatx.cplt_arg = (void *)hperh; hperh->hdmatx.cplt_cbk = spi_dma_send_cplt; hperh->hdmatx.err_arg = (void *)hperh; hperh->hdmatx.err_cbk = spi_dma_error; /* Configure SPI DMA transmit */ ald_dma_config_struct(&(hperh->hdmatx.config)); hperh->hdmatx.config.data_width = hperh->init.data_size == SPI_DATA_SIZE_8 ? DMA_DATA_SIZE_BYTE : DMA_DATA_SIZE_HALFWORD; hperh->hdmatx.config.src = (void *)buf; hperh->hdmatx.config.dst = (void *)&hperh->perh->DATA; hperh->hdmatx.config.size = size; hperh->hdmatx.config.src_inc = hperh->init.data_size == SPI_DATA_SIZE_8 ? DMA_DATA_INC_BYTE : DMA_DATA_INC_HALFWORD; hperh->hdmatx.config.dst_inc = DMA_DATA_INC_NONE; hperh->hdmatx.config.msel = hperh->perh == SPI0 ? DMA_MSEL_SPI0 : (hperh->perh == SPI1 ? DMA_MSEL_SPI1 : DMA_MSEL_SPI2); hperh->hdmatx.config.msigsel = DMA_MSIGSEL_SPI_TXEMPTY; hperh->hdmatx.config.channel = channel; ald_dma_config_basic(&(hperh->hdmatx)); __UNLOCK(hperh); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, ENABLE); if (READ_BIT(hperh->perh->CON1, SPI_CON1_SPIEN_MSK) == 0) SPI_ENABLE(hperh); return OK; } /** * @brief Receive an amount of data used dma channel * @param hperh: Pointer to a spi_handle_t structure. * @param buf: Pointer to data buffer * @param size: Amount of data to be sent * @param channel: DMA channel as SPI transmit * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_recv_by_dma(spi_handle_t *hperh, uint8_t *buf, uint16_t size, uint8_t channel) { assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY) return BUSY; if (buf == NULL || size == 0) return ERROR; __LOCK(hperh); hperh->state = SPI_STATE_BUSY_RX; hperh->err_code = SPI_ERROR_NONE; hperh->rx_buf = buf; hperh->rx_size = size; hperh->rx_count = size; hperh->tx_buf = NULL; hperh->tx_size = 0; hperh->tx_count = 0; if (hperh->init.dir == SPI_DIRECTION_1LINE_RX) SPI_1LINE_RX(hperh); if ((hperh->init.dir == SPI_DIRECTION_2LINES) && (hperh->init.mode == SPI_MODE_MASTER)) { __UNLOCK(hperh); return ERROR; /* Please use ald_spi_send_recv_by_dma() */ } if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); if (hperh->hdmarx.perh == NULL) hperh->hdmarx.perh = DMA0; hperh->hdmarx.cplt_arg = (void *)hperh; hperh->hdmarx.cplt_cbk = spi_dma_recv_cplt; hperh->hdmarx.err_arg = (void *)hperh; hperh->hdmarx.err_cbk = spi_dma_error; /* Configure DMA Receive */ ald_dma_config_struct(&(hperh->hdmarx.config)); hperh->hdmarx.config.data_width = hperh->init.data_size == SPI_DATA_SIZE_8 ? DMA_DATA_SIZE_BYTE : DMA_DATA_SIZE_HALFWORD; hperh->hdmarx.config.src = (void *)&hperh->perh->DATA; hperh->hdmarx.config.dst = (void *)buf; hperh->hdmarx.config.size = size; hperh->hdmarx.config.src_inc = DMA_DATA_INC_NONE; hperh->hdmarx.config.dst_inc = hperh->init.data_size == SPI_DATA_SIZE_8 ? DMA_DATA_INC_BYTE : DMA_DATA_INC_HALFWORD;; hperh->hdmarx.config.msel = hperh->perh == SPI0 ? DMA_MSEL_SPI0 : (hperh->perh == SPI1 ? DMA_MSEL_SPI1 : DMA_MSEL_SPI2); hperh->hdmarx.config.msigsel = DMA_MSIGSEL_SPI_RNR; hperh->hdmarx.config.channel = channel; ald_dma_config_basic(&(hperh->hdmarx)); __UNLOCK(hperh); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_RX, ENABLE); if ((hperh->init.dir == SPI_DIRECTION_2LINES_RXONLY) || (hperh->init.dir == SPI_DIRECTION_1LINE_RX)) SPI_ENABLE(hperh); return OK; } /** * @brief Transmit and Receive an amount of data used dma channel * @param hperh: Pointer to a spi_handle_t structure. * @param tx_buf: Pointer to data buffer * @param rx_buf: Pointer to data buffer * @param size: Amount of data to be sent * @param tx_channel: DMA channel as SPI transmit * @param rx_channel: DMA channel as SPI receive * @retval Status, see @ref ald_status_t. */ ald_status_t ald_spi_send_recv_by_dma(spi_handle_t *hperh, uint8_t *tx_buf, uint8_t *rx_buf, uint16_t size, uint8_t tx_channel, uint8_t rx_channel) { assert_param(IS_SPI(hperh->perh)); if (hperh->state != SPI_STATE_READY && hperh->state != SPI_STATE_BUSY_RX) return BUSY; if (tx_buf == NULL || rx_buf == NULL || size == 0) return ERROR; __LOCK(hperh); hperh->state = SPI_STATE_BUSY_RX; hperh->err_code = SPI_ERROR_NONE; hperh->tx_buf = tx_buf; hperh->tx_size = size; hperh->tx_count = size; hperh->rx_buf = rx_buf; hperh->rx_size = size; hperh->rx_count = size; if (hperh->hdmatx.perh == NULL) hperh->hdmatx.perh = DMA0; if (hperh->hdmarx.perh == NULL) hperh->hdmarx.perh = DMA0; hperh->hdmatx.cplt_arg = NULL; hperh->hdmatx.cplt_cbk = NULL; hperh->hdmatx.err_arg = (void *)hperh; hperh->hdmatx.err_cbk = spi_dma_error; hperh->hdmarx.cplt_arg = (void *)hperh; hperh->hdmarx.cplt_cbk = spi_dma_send_recv_cplt; hperh->hdmarx.err_arg = (void *)hperh; hperh->hdmarx.err_cbk = spi_dma_error; if (hperh->init.crc_calc) SPI_CRC_RESET(hperh); /* Configure SPI DMA transmit */ ald_dma_config_struct(&(hperh->hdmatx.config)); hperh->hdmatx.config.data_width = hperh->init.data_size == SPI_DATA_SIZE_8 ? DMA_DATA_SIZE_BYTE : DMA_DATA_SIZE_HALFWORD; hperh->hdmatx.config.src = (void *)tx_buf; hperh->hdmatx.config.dst = (void *)&hperh->perh->DATA; hperh->hdmatx.config.size = size; hperh->hdmatx.config.src_inc = hperh->init.data_size == SPI_DATA_SIZE_8 ? DMA_DATA_INC_BYTE : DMA_DATA_INC_HALFWORD; hperh->hdmatx.config.dst_inc = DMA_DATA_INC_NONE; hperh->hdmatx.config.msel = hperh->perh == SPI0 ? DMA_MSEL_SPI0 : (hperh->perh == SPI1 ? DMA_MSEL_SPI1 : DMA_MSEL_SPI2); hperh->hdmatx.config.msigsel = DMA_MSIGSEL_SPI_TXEMPTY; hperh->hdmatx.config.channel = tx_channel; ald_dma_config_basic(&(hperh->hdmatx)); /* Configure DMA Receive */ ald_dma_config_struct(&(hperh->hdmarx.config)); hperh->hdmarx.config.data_width = hperh->init.data_size == SPI_DATA_SIZE_8 ? DMA_DATA_SIZE_BYTE : DMA_DATA_SIZE_HALFWORD; hperh->hdmarx.config.src = (void *)&hperh->perh->DATA; hperh->hdmarx.config.dst = (void *)rx_buf; hperh->hdmarx.config.size = size; hperh->hdmarx.config.src_inc = DMA_DATA_INC_NONE; hperh->hdmarx.config.dst_inc = hperh->init.data_size == SPI_DATA_SIZE_8 ? DMA_DATA_INC_BYTE : DMA_DATA_INC_HALFWORD;; hperh->hdmarx.config.msel = hperh->perh == SPI0 ? DMA_MSEL_SPI0 : (hperh->perh == SPI1 ? DMA_MSEL_SPI1 : DMA_MSEL_SPI2); hperh->hdmarx.config.msigsel = DMA_MSIGSEL_SPI_RNR; hperh->hdmarx.config.channel = rx_channel; ald_dma_config_basic(&(hperh->hdmarx)); __UNLOCK(hperh); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, ENABLE); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_RX, ENABLE); return OK; } /** * @brief Pauses the DMA Transfer. * @param hperh: Pointer to a spi_handle_t structure. * @retval Status */ ald_status_t ald_spi_dma_pause(spi_handle_t *hperh) { assert_param(IS_SPI(hperh->perh)); __LOCK(hperh); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, DISABLE); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_RX, DISABLE); __UNLOCK(hperh); return OK; } /** * @brief Resumes the DMA Transfer. * @param hperh: Pointer to a spi_handle_t structure. * @retval Status */ ald_status_t ald_spi_dma_resume(spi_handle_t *hperh) { assert_param(IS_SPI(hperh->perh)); __LOCK(hperh); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, ENABLE); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_RX, ENABLE); __UNLOCK(hperh); return OK; } /** * @brief Stops the DMA Transfer. * @param hperh: Pointer to a spi_handle_t structure. * @retval Status */ ald_status_t ald_spi_dma_stop(spi_handle_t *hperh) { assert_param(IS_SPI(hperh->perh)); __LOCK(hperh); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, DISABLE); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_RX, DISABLE); __UNLOCK(hperh); hperh->state = SPI_STATE_READY; return OK; } #endif /** * @} */ /** @defgroup SPI_Public_Functions_Group3 Control functions * @brief SPI Control functions * * @verbatim =============================================================================== ##### Peripheral Control functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to control the SPI. (+) Handle interrupt about SPI module. The ald_spi_irq_handler() function must be invoked by SPI-IRQ function. (+) Configure the interrupt DISABLE/ENABLE. (+) Configure the DMA request. (+) Get interrupt source status. (+) Get interrupt flag status. (+) Clear interrupt flag @endverbatim * @{ */ /** * @brief This function handles SPI interrupt request. * @param hperh: Pointer to a spi_handle_t structure. * @retval None */ void ald_spi_irq_handler(spi_handle_t *hperh) { if ((hperh->state == SPI_STATE_BUSY_RX) || (hperh->state == SPI_STATE_BUSY_TX)) { if ((ald_spi_get_it_status(hperh, SPI_IT_RXBNE) != RESET) && (ald_spi_get_flag_status(hperh, SPI_IF_RXBNE) != RESET)) __spi_recv_by_it(hperh); if ((ald_spi_get_it_status(hperh, SPI_IT_TXBE) != RESET) && (ald_spi_get_flag_status(hperh, SPI_IF_TXBE) != RESET)) __spi_send_by_it(hperh); } else if (hperh->state == SPI_STATE_BUSY_TX_RX) { if (hperh->tx_size == hperh->tx_count) { if ((ald_spi_get_it_status(hperh, SPI_IT_TXBE) != RESET) && (ald_spi_get_flag_status(hperh, SPI_IF_TXBE) != RESET)) __spi_send_recv_by_it(hperh, SPI_SR_TXBE); } else { if ((ald_spi_get_it_status(hperh, SPI_IT_TXBE) != RESET) && (ald_spi_get_flag_status(hperh, SPI_IF_TXBE) != RESET) && (ald_spi_get_it_status(hperh, SPI_IT_RXBNE) != RESET) && (ald_spi_get_flag_status(hperh, SPI_IF_RXBNE) != RESET)) __spi_send_recv_by_it(hperh, SPI_SR_TXBE_RXBNE); } } if ((ald_spi_get_it_status(hperh, SPI_IT_ERR) != RESET)) { if (ald_spi_get_flag_status(hperh, SPI_IF_CRCERR) != RESET) { hperh->err_code |= SPI_ERROR_CRC; ald_spi_clear_flag_status(hperh, SPI_IF_CRCERR); } if (ald_spi_get_flag_status(hperh, SPI_IF_MODF) != RESET) { hperh->err_code |= SPI_ERROR_MODF; ald_spi_clear_flag_status(hperh, SPI_IF_MODF); } if (ald_spi_get_flag_status(hperh, SPI_IF_OVE) != RESET) { if (hperh->state != SPI_STATE_BUSY_TX) { hperh->err_code |= SPI_ERROR_OVE; ald_spi_clear_flag_status(hperh, SPI_IF_OVE); } } if (hperh->err_code != SPI_ERROR_NONE) { ald_spi_interrupt_config(hperh, SPI_IT_RXBNE, DISABLE); ald_spi_interrupt_config(hperh, SPI_IT_TXBE, DISABLE); ald_spi_interrupt_config(hperh, SPI_IT_ERR, DISABLE); hperh->state = SPI_STATE_READY; if (hperh->err_cbk) hperh->err_cbk(hperh); } } return; } /** * @brief Enables or disables the specified SPI interrupts. * @param hperh: Pointer to a spi_handle_t structure. * @param it: Specifies the SPI interrupt sources to be enabled or disabled. * This parameter can be one of the @ref spi_it_t. * @param state: New status * - ENABLE * - DISABLE * @retval None */ void ald_spi_interrupt_config(spi_handle_t *hperh, spi_it_t it, type_func_t state) { assert_param(IS_SPI(hperh->perh)); assert_param(IS_SPI_IT(it)); assert_param(IS_FUNC_STATE(state)); if (state == ENABLE) hperh->perh->CON2 |= (uint32_t)it; else hperh->perh->CON2 &= ~((uint32_t)it); return; } /** * @brief Configure the specified SPI speed. * @param hperh: Pointer to a spi_handle_t structure. * @param speed: Specifies the SPI speed. * This parameter can be one of the @ref spi_baud_t. * @retval None */ void ald_spi_speed_config(spi_handle_t *hperh, spi_baud_t speed) { uint32_t tmp = 0; assert_param(IS_SPI(hperh->perh)); assert_param(IS_SPI_BAUD(speed)); tmp = hperh->perh->CON1; tmp &= ~(0x7 << SPI_CON1_BAUD_POSS); tmp |= (speed << SPI_CON1_BAUD_POSS); hperh->perh->CON1 = tmp; return; } /** * @brief Enables or disables the dma request. * @param hperh: Pointer to a spi_handle_t structure. * @param req: Specifies the SPI dma request sources to be enabled or disabled. * This parameter can be one of the @ref spi_dma_req_t. * @param state: New status * - ENABLE * - DISABLE * @retval None */ void ald_spi_dma_req_config(spi_handle_t *hperh, spi_dma_req_t req, type_func_t state) { assert_param(IS_SPI(hperh->perh)); assert_param(IS_SPI_DMA_REQ(req)); assert_param(IS_FUNC_STATE(state)); if (state == ENABLE) { if (req == SPI_DMA_REQ_TX) SET_BIT(hperh->perh->CON2, SPI_CON2_TXDMA_MSK); else SET_BIT(hperh->perh->CON2, SPI_CON2_RXDMA_MSK); } else { if (req == SPI_DMA_REQ_TX) CLEAR_BIT(hperh->perh->CON2, SPI_CON2_TXDMA_MSK); else CLEAR_BIT(hperh->perh->CON2, SPI_CON2_RXDMA_MSK); } return; } /** @brief Check whether the specified SPI state flag is set or not. * @param hperh: Pointer to a spi_handle_t structure. * @param status: specifies the flag to check. * This parameter can be one of the @ref spi_status_t. * @retval Status * - SET * - RESET */ flag_status_t spi_get_status(spi_handle_t *hperh, spi_status_t status) { assert_param(IS_SPI(hperh->perh)); assert_param(IS_SPI_STATUS(status)); if (hperh->perh->STAT & status) return SET; return RESET; } /** * @brief Checks whether the specified SPI interrupt has occurred or not. * @param hperh: Pointer to a spi_handle_t structure. * @param it: Specifies the SPI interrupt source to check. * This parameter can be one of the @ref spi_it_t. * @retval Status * - SET * - RESET */ it_status_t ald_spi_get_it_status(spi_handle_t *hperh, spi_it_t it) { assert_param(IS_SPI(hperh->perh)); assert_param(IS_SPI_IT(it)); if (hperh->perh->CON2 & it) return SET; return RESET; } /** @brief Check whether the specified SPI flag is set or not. * @param hperh: Pointer to a spi_handle_t structure. * @param flag: specifies the flag to check. * This parameter can be one of the @ref spi_flag_t. * @retval Status * - SET * - RESET */ flag_status_t ald_spi_get_flag_status(spi_handle_t *hperh, spi_flag_t flag) { assert_param(IS_SPI(hperh->perh)); assert_param(IS_SPI_IF(flag)); if (hperh->perh->STAT & flag) return SET; return RESET; } /** @brief Clear the specified SPI pending flags. * @param hperh: Pointer to a spi_handle_t structure. * @param flag: specifies the flag to check. * This parameter can be one of the @ref spi_flag_t. * @retval None */ void ald_spi_clear_flag_status(spi_handle_t *hperh, spi_flag_t flag) { uint32_t temp; assert_param(IS_SPI(hperh->perh)); assert_param(IS_SPI_IF(flag)); if (flag == SPI_IF_CRCERR) { SET_BIT(hperh->perh->STAT, SPI_STAT_CRCERR_MSK); return; } if (flag == SPI_IF_OVE) { temp = hperh->perh->DATA; temp = hperh->perh->STAT; UNUSED(temp); return; } if (flag == SPI_IF_MODF) { temp = hperh->perh->STAT; UNUSED(temp); hperh->perh->CON1 = hperh->perh->CON1; return; } return; } /** * @brief This function handles SPI communication timeout. * @param hperh: Pointer to a spi_handle_t structure. * @param flag: specifies the SPI flag to check. * @param status: The new Flag status (SET or RESET). * @param timeout: Timeout duration * @retval Status, see @ref ald_status_t. */ static ald_status_t spi_wait_flag(spi_handle_t *hperh, spi_flag_t flag, flag_status_t status, uint32_t timeout) { uint32_t tick = ald_get_tick(); assert_param(timeout > 0); while ((ald_spi_get_flag_status(hperh, flag)) != status) { if (((ald_get_tick()) - tick) > timeout) { ald_spi_interrupt_config(hperh, SPI_IT_TXBE, DISABLE); ald_spi_interrupt_config(hperh, SPI_IT_RXBNE, DISABLE); ald_spi_interrupt_config(hperh, SPI_IT_ERR, DISABLE); return TIMEOUT; } } return OK; } /** * @brief This function handles SPI communication timeout in interrupt function. * @param hperh: Pointer to a spi_handle_t structure. * @param flag: specifies the SPI flag to check. * @param status: The new Flag status (SET or RESET). * @param timeout: Timeout duration * @retval Status, see @ref ald_status_t. */ static ald_status_t spi_wait_flag_irq(spi_handle_t *hperh, spi_flag_t flag, flag_status_t status, uint32_t timeout) { assert_param(timeout > 0); while (((ald_spi_get_flag_status(hperh, flag)) != status) && (--timeout)); if (timeout) return OK; ald_spi_interrupt_config(hperh, SPI_IT_TXBE, DISABLE); ald_spi_interrupt_config(hperh, SPI_IT_RXBNE, DISABLE); ald_spi_interrupt_config(hperh, SPI_IT_ERR, DISABLE); return TIMEOUT; } /** * @} */ /** @defgroup SPI_Public_Functions_Group4 Peripheral State and Errors functions * @brief SPI State and Errors functions * * @verbatim =============================================================================== ##### Peripheral State and Errors functions ##### =============================================================================== [..] This subsection provides a set of functions allowing to control the SPI. (+) ald_spi_get_state() API can check in run-time the state of the SPI peripheral (+) ald_spi_get_error() check in run-time Errors occurring during communication @endverbatim * @{ */ /** * @brief Returns the SPI state. * @param hperh: Pointer to a spi_handle_t structure. * @retval ALD state */ spi_state_t ald_spi_get_state(spi_handle_t *hperh) { assert_param(IS_SPI(hperh->perh)); return hperh->state; } /** * @brief Return the SPI error code * @param hperh: Pointer to a spi_handle_t structure. * @retval SPI Error Code */ uint32_t ald_spi_get_error(spi_handle_t *hperh) { assert_param(IS_SPI(hperh->perh)); return hperh->err_code; } /** * @} */ /** * @} */ /** @defgroup SPI_Private_Functions SPI Private Functions * @brief SPI Private functions * @{ */ /** * @brief handle program when an tx empty interrupt flag arrived in non block mode * @param hperh: Pointer to a spi_handle_t structure. * @retval Status, see @ref ald_status_t. */ static void __spi_send_by_it(spi_handle_t *hperh) { if (hperh->tx_count == 0) { ald_spi_interrupt_config(hperh, SPI_IT_TXBE, DISABLE); hperh->state = SPI_STATE_READY; if (hperh->init.dir == SPI_DIRECTION_2LINES) ald_spi_clear_flag_status(hperh, SPI_IF_OVE); if ((spi_wait_flag_irq(hperh, SPI_IF_BUSY, RESET, 5000)) != OK) { if (hperh->err_cbk) hperh->err_cbk(hperh); return; } if (hperh->tx_cplt_cbk) hperh->tx_cplt_cbk(hperh); return; } if (hperh->init.data_size == SPI_DATA_SIZE_8) { hperh->perh->DATA = *hperh->tx_buf; ++hperh->tx_buf; } else { hperh->perh->DATA = *(uint16_t *)hperh->tx_buf; hperh->tx_buf += 2; } --hperh->tx_count; if (hperh->tx_count == 0) { if (hperh->init.crc_calc) SPI_CRCNEXT_ENABLE(hperh); } return; } /** * @brief handle program when an rx no empty interrupt flag arrived in non block mode * @param hperh: Pointer to a spi_handle_t structure. * @retval Status, see @ref ald_status_t. */ static void __spi_recv_by_it(spi_handle_t *hperh) { uint16_t temp; if (hperh->init.data_size == SPI_DATA_SIZE_8) { *hperh->rx_buf = hperh->perh->DATA; ++hperh->rx_buf; } else { *(uint16_t *)hperh->rx_buf = hperh->perh->DATA; hperh->rx_buf += 2; } --hperh->rx_count; if ((hperh->rx_count == 1) && (hperh->init.crc_calc)) SPI_CRCNEXT_ENABLE(hperh); if (hperh->rx_count == 0) { ald_spi_interrupt_config(hperh, SPI_IT_RXBNE, DISABLE); hperh->state = SPI_STATE_READY; if ((hperh->init.crc_calc) && (ald_spi_get_flag_status(hperh, SPI_IF_CRCERR) != RESET)) { hperh->err_code |= SPI_ERROR_CRC; ald_spi_clear_flag_status(hperh, SPI_IF_CRCERR); if (hperh->err_cbk) hperh->err_cbk(hperh); return; } if (hperh->init.crc_calc) { temp = hperh->perh->DATA; UNUSED(temp); } if (hperh->rx_cplt_cbk) hperh->rx_cplt_cbk(hperh); } return; } /** * @brief handle program when an rx no empty interrupt flag arrived in non block mode(2 lines) * @param hperh: Pointer to a spi_handle_t structure. * @param status: SR.TXE or SR.RXNE set. * @retval Status, see @ref ald_status_t. */ static void __spi_send_recv_by_it(spi_handle_t *hperh, spi_sr_status_t status) { assert_param(IS_SPI_SR_STATUS(status)); if (hperh->rx_count != 0) { if ((status == SPI_SR_RXBNE) || (status == SPI_SR_TXBE_RXBNE)) { if (hperh->init.data_size == SPI_DATA_SIZE_8) { *hperh->rx_buf = hperh->perh->DATA; ++hperh->rx_buf; } else { *(uint16_t *)hperh->rx_buf = hperh->perh->DATA; hperh->rx_buf += 2; } --hperh->rx_count; } } if (hperh->tx_count != 0) { if ((status == SPI_SR_TXBE) || (status == SPI_SR_TXBE_RXBNE)) { if (hperh->tx_count == 1) { if (hperh->init.data_size == SPI_DATA_SIZE_8) { hperh->perh->DATA = *hperh->tx_buf; ++hperh->tx_buf; } else { hperh->perh->DATA = *(uint16_t *)hperh->tx_buf; hperh->tx_buf += 2; } --hperh->tx_count; if (hperh->init.crc_calc) SPI_CRCNEXT_ENABLE(hperh); } else { if (hperh->init.data_size == SPI_DATA_SIZE_8) { hperh->perh->DATA = *hperh->tx_buf; ++hperh->tx_buf; } else { hperh->perh->DATA = *(uint16_t *)hperh->tx_buf; hperh->tx_buf += 2; } if (--hperh->tx_count == 0) { if (hperh->init.crc_calc) SPI_CRCNEXT_ENABLE(hperh); ald_spi_interrupt_config(hperh, SPI_IT_TXBE, DISABLE); } } } } if (hperh->rx_count == 0) { ald_spi_interrupt_config(hperh, SPI_IT_TXBE, DISABLE); ald_spi_interrupt_config(hperh, SPI_IT_RXBNE, DISABLE); ald_spi_interrupt_config(hperh, SPI_IT_ERR, DISABLE); hperh->state = SPI_STATE_READY; if ((hperh->init.crc_calc) && (ald_spi_get_flag_status(hperh, SPI_IF_CRCERR) != RESET)) { hperh->err_code |= SPI_ERROR_CRC; ald_spi_clear_flag_status(hperh, SPI_IF_CRCERR); if (hperh->err_cbk) hperh->err_cbk(hperh); return; } if (hperh->tx_rx_cplt_cbk) hperh->tx_rx_cplt_cbk(hperh); } return; } #ifdef ALD_DMA /** * @brief DMA SPI transmit process complete callback. * @param arg: Pointer to a spi_handle_t structure. * @retval None */ static void spi_dma_send_cplt(void *arg) { uint16_t delay; spi_handle_t *hperh = (spi_handle_t *)arg; hperh->tx_count = 0; ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, DISABLE); hperh->state = SPI_STATE_READY; if (hperh->init.dir == SPI_DIRECTION_2LINES) ald_spi_clear_flag_status(hperh, SPI_IF_OVE); if ((spi_wait_flag_irq(hperh, SPI_IF_BUSY, RESET, 5000)) != OK) hperh->err_code |= SPI_ERROR_FLAG; for (delay = 0; delay < 3000; delay++); if (hperh->err_code == SPI_ERROR_NONE) { if (hperh->tx_cplt_cbk) hperh->tx_cplt_cbk(hperh); } else { if (hperh->err_cbk) hperh->err_cbk(hperh); } return; } /** * @brief DMA SPI receive process complete callback. * @param arg: Pointer to a spi_handle_t structure. * @retval None */ static void spi_dma_recv_cplt(void *arg) { uint32_t tmp; spi_handle_t *hperh = (spi_handle_t *)arg; hperh->rx_count = 0; ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, DISABLE); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_RX, DISABLE); hperh->state = SPI_STATE_READY; if (hperh->init.crc_calc) { if ((spi_wait_flag_irq(hperh, SPI_IF_RXBNE, SET, 5000)) != OK) hperh->err_code |= SPI_ERROR_FLAG; tmp = hperh->perh->DATA; UNUSED(tmp); if (ald_spi_get_flag_status(hperh, SPI_IF_CRCERR) == SET) { SET_BIT(hperh->err_code, SPI_ERROR_CRC); SPI_CRC_RESET(hperh); ald_spi_clear_flag_status(hperh, SPI_IF_CRCERR); } } if (hperh->err_code == SPI_ERROR_NONE) { if (hperh->rx_cplt_cbk) hperh->rx_cplt_cbk(hperh); } else { if (hperh->err_cbk) hperh->err_cbk(hperh); } return; } /** * @brief DMA SPI transmit and receive process complete callback. * @param arg: Pointer to a SPI_handle_t structure. * @retval None */ static void spi_dma_send_recv_cplt(void *arg) { uint32_t tmp; uint16_t delay; spi_handle_t *hperh = (spi_handle_t *)arg; if (hperh->init.crc_calc) { if ((spi_wait_flag_irq(hperh, SPI_IF_RXBNE, SET, 5000)) != OK) hperh->err_code |= SPI_ERROR_FLAG; tmp = hperh->perh->DATA; UNUSED(tmp); if (ald_spi_get_flag_status(hperh, SPI_IF_CRCERR) == SET) { SET_BIT(hperh->err_code, SPI_ERROR_CRC); ald_spi_clear_flag_status(hperh, SPI_IF_CRCERR); } } if ((spi_wait_flag_irq(hperh, SPI_IF_BUSY, RESET, 5000)) != OK) hperh->err_code |= SPI_ERROR_FLAG; for (delay = 0; delay < 3000; delay++); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, DISABLE); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_RX, DISABLE); hperh->tx_count = 0; hperh->rx_count = 0; hperh->state = SPI_STATE_READY; if (hperh->err_code == SPI_ERROR_NONE) { if (hperh->tx_rx_cplt_cbk) hperh->tx_rx_cplt_cbk(hperh); } else { if (hperh->err_cbk) hperh->err_cbk(hperh); } return; } /** * @brief DMA SPI communication error callback. * @param arg: Pointer to a spi_handle_t structure that contains * the configuration information for the specified SPI module. * @retval None */ static void spi_dma_error(void *arg) { spi_handle_t *hperh = (spi_handle_t *)arg; ald_spi_dma_req_config(hperh, SPI_DMA_REQ_TX, DISABLE); ald_spi_dma_req_config(hperh, SPI_DMA_REQ_RX, DISABLE); SET_BIT(hperh->err_code, SPI_ERROR_DMA); hperh->tx_count = 0; hperh->rx_count = 0; hperh->state = SPI_STATE_READY; if (hperh->err_cbk) hperh->err_cbk(hperh); return; } #endif /* ALD_DMA */ /** * @} */ #endif /* ALD_SPI */ /** * @} */ /** * @} */