# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.nn as nn from paddle import ParamAttr import paddle.nn.functional as F import numpy as np from .rec_att_head import AttentionGRUCell def get_para_bias_attr(l2_decay, k): if l2_decay > 0: regularizer = paddle.regularizer.L2Decay(l2_decay) stdv = 1.0 / math.sqrt(k * 1.0) initializer = nn.initializer.Uniform(-stdv, stdv) else: regularizer = None initializer = None weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer) bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer) return [weight_attr, bias_attr] class TableAttentionHead(nn.Layer): def __init__(self, in_channels, hidden_size, in_max_len=488, max_text_length=800, out_channels=30, loc_reg_num=4, **kwargs): super(TableAttentionHead, self).__init__() self.input_size = in_channels[-1] self.hidden_size = hidden_size self.out_channels = out_channels self.max_text_length = max_text_length self.structure_attention_cell = AttentionGRUCell( self.input_size, hidden_size, self.out_channels, use_gru=False) self.structure_generator = nn.Linear(hidden_size, self.out_channels) self.in_max_len = in_max_len if self.in_max_len == 640: self.loc_fea_trans = nn.Linear(400, self.max_text_length + 1) elif self.in_max_len == 800: self.loc_fea_trans = nn.Linear(625, self.max_text_length + 1) else: self.loc_fea_trans = nn.Linear(256, self.max_text_length + 1) self.loc_generator = nn.Linear(self.input_size + hidden_size, loc_reg_num) def _char_to_onehot(self, input_char, onehot_dim): input_ont_hot = F.one_hot(input_char, onehot_dim) return input_ont_hot def forward(self, inputs, targets=None): # if and else branch are both needed when you want to assign a variable # if you modify the var in just one branch, then the modification will not work. fea = inputs[-1] last_shape = int(np.prod(fea.shape[2:])) # gry added fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape]) fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels) batch_size = fea.shape[0] hidden = paddle.zeros((batch_size, self.hidden_size)) output_hiddens = paddle.zeros((batch_size, self.max_text_length + 1, self.hidden_size)) if self.training and targets is not None: structure = targets[0] for i in range(self.max_text_length + 1): elem_onehots = self._char_to_onehot( structure[:, i], onehot_dim=self.out_channels) (outputs, hidden), alpha = self.structure_attention_cell( hidden, fea, elem_onehots) output_hiddens[:, i, :] = outputs # output_hiddens.append(paddle.unsqueeze(outputs, axis=1)) output = paddle.concat(output_hiddens, axis=1) structure_probs = self.structure_generator(output) if self.loc_type == 1: loc_preds = self.loc_generator(output) loc_preds = F.sigmoid(loc_preds) else: loc_fea = fea.transpose([0, 2, 1]) loc_fea = self.loc_fea_trans(loc_fea) loc_fea = loc_fea.transpose([0, 2, 1]) loc_concat = paddle.concat([output, loc_fea], axis=2) loc_preds = self.loc_generator(loc_concat) loc_preds = F.sigmoid(loc_preds) else: temp_elem = paddle.zeros(shape=[batch_size], dtype="int32") structure_probs = None loc_preds = None elem_onehots = None outputs = None alpha = None max_text_length = paddle.to_tensor(self.max_text_length) for i in range(max_text_length + 1): elem_onehots = self._char_to_onehot( temp_elem, onehot_dim=self.out_channels) (outputs, hidden), alpha = self.structure_attention_cell( hidden, fea, elem_onehots) output_hiddens[:, i, :] = outputs # output_hiddens.append(paddle.unsqueeze(outputs, axis=1)) structure_probs_step = self.structure_generator(outputs) temp_elem = structure_probs_step.argmax(axis=1, dtype="int32") output = output_hiddens structure_probs = self.structure_generator(output) structure_probs = F.softmax(structure_probs) loc_fea = fea.transpose([0, 2, 1]) loc_fea = self.loc_fea_trans(loc_fea) loc_fea = loc_fea.transpose([0, 2, 1]) loc_concat = paddle.concat([output, loc_fea], axis=2) loc_preds = self.loc_generator(loc_concat) loc_preds = F.sigmoid(loc_preds) return {'structure_probs': structure_probs, 'loc_preds': loc_preds} class SLAHead(nn.Layer): def __init__(self, in_channels, hidden_size, out_channels=30, max_text_length=500, loc_reg_num=4, fc_decay=0.0, **kwargs): """ @param in_channels: input shape @param hidden_size: hidden_size for RNN and Embedding @param out_channels: num_classes to rec @param max_text_length: max text pred """ super().__init__() in_channels = in_channels[-1] self.hidden_size = hidden_size self.max_text_length = max_text_length self.emb = self._char_to_onehot self.num_embeddings = out_channels self.loc_reg_num = loc_reg_num # structure self.structure_attention_cell = AttentionGRUCell( in_channels, hidden_size, self.num_embeddings) weight_attr, bias_attr = get_para_bias_attr( l2_decay=fc_decay, k=hidden_size) weight_attr1_1, bias_attr1_1 = get_para_bias_attr( l2_decay=fc_decay, k=hidden_size) weight_attr1_2, bias_attr1_2 = get_para_bias_attr( l2_decay=fc_decay, k=hidden_size) self.structure_generator = nn.Sequential( nn.Linear( self.hidden_size, self.hidden_size, weight_attr=weight_attr1_2, bias_attr=bias_attr1_2), nn.Linear( hidden_size, out_channels, weight_attr=weight_attr, bias_attr=bias_attr)) # loc weight_attr1, bias_attr1 = get_para_bias_attr( l2_decay=fc_decay, k=self.hidden_size) weight_attr2, bias_attr2 = get_para_bias_attr( l2_decay=fc_decay, k=self.hidden_size) self.loc_generator = nn.Sequential( nn.Linear( self.hidden_size, self.hidden_size, weight_attr=weight_attr1, bias_attr=bias_attr1), nn.Linear( self.hidden_size, loc_reg_num, weight_attr=weight_attr2, bias_attr=bias_attr2), nn.Sigmoid()) def forward(self, inputs, targets=None): fea = inputs[-1] batch_size = fea.shape[0] # reshape fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], -1]) fea = fea.transpose([0, 2, 1]) # (NTC)(batch, width, channels) hidden = paddle.zeros((batch_size, self.hidden_size)) structure_preds = paddle.zeros((batch_size, self.max_text_length + 1, self.num_embeddings)) loc_preds = paddle.zeros((batch_size, self.max_text_length + 1, self.loc_reg_num)) structure_preds.stop_gradient = True loc_preds.stop_gradient = True if self.training and targets is not None: structure = targets[0] for i in range(self.max_text_length + 1): hidden, structure_step, loc_step = self._decode(structure[:, i], fea, hidden) structure_preds[:, i, :] = structure_step loc_preds[:, i, :] = loc_step else: pre_chars = paddle.zeros(shape=[batch_size], dtype="int32") max_text_length = paddle.to_tensor(self.max_text_length) # for export loc_step, structure_step = None, None for i in range(max_text_length + 1): hidden, structure_step, loc_step = self._decode(pre_chars, fea, hidden) pre_chars = structure_step.argmax(axis=1, dtype="int32") structure_preds[:, i, :] = structure_step loc_preds[:, i, :] = loc_step if not self.training: structure_preds = F.softmax(structure_preds) return {'structure_probs': structure_preds, 'loc_preds': loc_preds} def _decode(self, pre_chars, features, hidden): """ Predict table label and coordinates for each step @param pre_chars: Table label in previous step @param features: @param hidden: hidden status in previous step @return: """ emb_feature = self.emb(pre_chars) # output shape is b * self.hidden_size (output, hidden), alpha = self.structure_attention_cell( hidden, features, emb_feature) # structure structure_step = self.structure_generator(output) # loc loc_step = self.loc_generator(output) return hidden, structure_step, loc_step def _char_to_onehot(self, input_char): input_ont_hot = F.one_hot(input_char, self.num_embeddings) return input_ont_hot