# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import cv2 import math import paddle from arch import style_text_rec from utils.sys_funcs import check_gpu from utils.logging import get_logger class StyleTextRecPredictor(object): def __init__(self, config): algorithm = config['Predictor']['algorithm'] assert algorithm in ["StyleTextRec" ], "Generator {} not supported.".format(algorithm) use_gpu = config["Global"]['use_gpu'] check_gpu(use_gpu) paddle.set_device('gpu' if use_gpu else 'cpu') self.logger = get_logger() self.generator = getattr(style_text_rec, algorithm)(config) self.height = config["Global"]["image_height"] self.width = config["Global"]["image_width"] self.scale = config["Predictor"]["scale"] self.mean = config["Predictor"]["mean"] self.std = config["Predictor"]["std"] self.expand_result = config["Predictor"]["expand_result"] def predict(self, style_input, text_input): style_input = self.rep_style_input(style_input, text_input) tensor_style_input = self.preprocess(style_input) tensor_text_input = self.preprocess(text_input) style_text_result = self.generator.forward(tensor_style_input, tensor_text_input) fake_fusion = self.postprocess(style_text_result["fake_fusion"]) fake_text = self.postprocess(style_text_result["fake_text"]) fake_sk = self.postprocess(style_text_result["fake_sk"]) fake_bg = self.postprocess(style_text_result["fake_bg"]) bbox = self.get_text_boundary(fake_text) if bbox: left, right, top, bottom = bbox fake_fusion = fake_fusion[top:bottom, left:right, :] fake_text = fake_text[top:bottom, left:right, :] fake_sk = fake_sk[top:bottom, left:right, :] fake_bg = fake_bg[top:bottom, left:right, :] # fake_fusion = self.crop_by_text(img_fake_fusion, img_fake_text) return { "fake_fusion": fake_fusion, "fake_text": fake_text, "fake_sk": fake_sk, "fake_bg": fake_bg, } def preprocess(self, img): img = (img.astype('float32') * self.scale - self.mean) / self.std img_height, img_width, channel = img.shape assert channel == 3, "Please use an rgb image." ratio = img_width / float(img_height) if math.ceil(self.height * ratio) > self.width: resized_w = self.width else: resized_w = int(math.ceil(self.height * ratio)) img = cv2.resize(img, (resized_w, self.height)) new_img = np.zeros([self.height, self.width, 3]).astype('float32') new_img[:, 0:resized_w, :] = img img = new_img.transpose((2, 0, 1)) img = img[np.newaxis, :, :, :] return paddle.to_tensor(img) def postprocess(self, tensor): img = tensor.numpy()[0] img = img.transpose((1, 2, 0)) img = (img * self.std + self.mean) / self.scale img = np.maximum(img, 0.0) img = np.minimum(img, 255.0) img = img.astype('uint8') return img def rep_style_input(self, style_input, text_input): rep_num = int(1.2 * (text_input.shape[1] / text_input.shape[0]) / (style_input.shape[1] / style_input.shape[0])) + 1 style_input = np.tile(style_input, reps=[1, rep_num, 1]) max_width = int(self.width / self.height * style_input.shape[0]) style_input = style_input[:, :max_width, :] return style_input def get_text_boundary(self, text_img): img_height = text_img.shape[0] img_width = text_img.shape[1] bounder = 3 text_canny_img = cv2.Canny(text_img, 10, 20) edge_num_h = text_canny_img.sum(axis=0) no_zero_list_h = np.where(edge_num_h > 0)[0] edge_num_w = text_canny_img.sum(axis=1) no_zero_list_w = np.where(edge_num_w > 0)[0] if len(no_zero_list_h) == 0 or len(no_zero_list_w) == 0: return None left = max(no_zero_list_h[0] - bounder, 0) right = min(no_zero_list_h[-1] + bounder, img_width) top = max(no_zero_list_w[0] - bounder, 0) bottom = min(no_zero_list_w[-1] + bounder, img_height) return [left, right, top, bottom]