# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np import os import random import paddle from paddle.io import Dataset import time from .imaug import transform, create_operators from ppocr.utils.logging import get_logger logger = get_logger() class SimpleDataSet(Dataset): def __init__(self, config, mode): super(SimpleDataSet, self).__init__() global_config = config['Global'] dataset_config = config[mode]['dataset'] loader_config = config[mode]['loader'] batch_size = loader_config['batch_size_per_card'] self.delimiter = dataset_config.get('delimiter', '\t') label_file_list = dataset_config.pop('label_file_list') data_source_num = len(label_file_list) if data_source_num == 1: ratio_list = [1.0] else: ratio_list = dataset_config.pop('ratio_list') assert sum(ratio_list) == 1, "The sum of the ratio_list should be 1." assert len(ratio_list) == data_source_num, "The length of ratio_list should be the same as the file_list." self.data_dir = dataset_config['data_dir'] self.do_shuffle = loader_config['shuffle'] logger.info("Initialize indexs of datasets:%s" % label_file_list) self.data_lines_list, data_num_list = self.get_image_info_list( label_file_list) self.data_idx_order_list = self.dataset_traversal( data_num_list, ratio_list, batch_size) self.shuffle_data_random() self.ops = create_operators(dataset_config['transforms'], global_config) def get_image_info_list(self, file_list): if isinstance(file_list, str): file_list = [file_list] data_lines_list = [] data_num_list = [] for file in file_list: with open(file, "rb") as f: lines = f.readlines() data_lines_list.append(lines) data_num_list.append(len(lines)) return data_lines_list, data_num_list def dataset_traversal(self, data_num_list, ratio_list, batch_size): select_num_list = [] dataset_num = len(data_num_list) for dno in range(dataset_num): select_num = round(batch_size * ratio_list[dno]) select_num = max(select_num, 1) select_num_list.append(select_num) data_idx_order_list = [] cur_index_sets = [0] * dataset_num while True: finish_read_num = 0 for dataset_idx in range(dataset_num): cur_index = cur_index_sets[dataset_idx] if cur_index >= data_num_list[dataset_idx]: finish_read_num += 1 else: select_num = select_num_list[dataset_idx] for sno in range(select_num): cur_index = cur_index_sets[dataset_idx] if cur_index >= data_num_list[dataset_idx]: break data_idx_order_list.append(( dataset_idx, cur_index)) cur_index_sets[dataset_idx] += 1 if finish_read_num == dataset_num: break return data_idx_order_list def shuffle_data_random(self): if self.do_shuffle: for dno in range(len(self.data_lines_list)): random.shuffle(self.data_lines_list[dno]) return def __getitem__(self, idx): dataset_idx, file_idx = self.data_idx_order_list[idx] data_line = self.data_lines_list[dataset_idx][file_idx] data_line = data_line.decode('utf-8') substr = data_line.strip("\n").split(self.delimiter) file_name = substr[0] label = substr[1] img_path = os.path.join(self.data_dir, file_name) data = {'img_path': img_path, 'label': label} with open(data['img_path'], 'rb') as f: img = f.read() data['image'] = img outs = transform(data, self.ops) if outs is None: return self.__getitem__(np.random.randint(self.__len__())) return outs def __len__(self): return len(self.data_idx_order_list)