# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import json import numpy as np import time import tools.infer.utility as utility from ppocr.data import create_operators, transform from ppocr.postprocess import build_post_process from ppocr.utils.logging import get_logger from ppocr.utils.visual import draw_ser_results from ppocr.utils.utility import get_image_file_list, check_and_read_gif from ppstructure.utility import parse_args from paddleocr import PaddleOCR logger = get_logger() class SerPredictor(object): def __init__(self, args): self.ocr_engine = PaddleOCR( use_angle_cls=False, show_log=False, use_gpu=args.use_gpu) pre_process_list = [{ 'VQATokenLabelEncode': { 'algorithm': args.vqa_algorithm, 'class_path': args.ser_dict_path, 'contains_re': False, 'ocr_engine': self.ocr_engine, 'order_method': args.ocr_order_method, } }, { 'VQATokenPad': { 'max_seq_len': 512, 'return_attention_mask': True } }, { 'VQASerTokenChunk': { 'max_seq_len': 512, 'return_attention_mask': True } }, { 'Resize': { 'size': [224, 224] } }, { 'NormalizeImage': { 'std': [58.395, 57.12, 57.375], 'mean': [123.675, 116.28, 103.53], 'scale': '1', 'order': 'hwc' } }, { 'ToCHWImage': None }, { 'KeepKeys': { 'keep_keys': [ 'input_ids', 'bbox', 'attention_mask', 'token_type_ids', 'image', 'labels', 'segment_offset_id', 'ocr_info', 'entities' ] } }] postprocess_params = { 'name': 'VQASerTokenLayoutLMPostProcess', "class_path": args.ser_dict_path, } self.preprocess_op = create_operators(pre_process_list, {'infer_mode': True}) self.postprocess_op = build_post_process(postprocess_params) self.predictor, self.input_tensor, self.output_tensors, self.config = \ utility.create_predictor(args, 'ser', logger) def __call__(self, img): ori_im = img.copy() data = {'image': img} data = transform(data, self.preprocess_op) img = data[0] if img is None: return None, 0 img = np.expand_dims(img, axis=0) img = img.copy() starttime = time.time() for idx in range(len(self.input_tensor)): expand_input = np.expand_dims(data[idx], axis=0) self.input_tensor[idx].copy_from_cpu(expand_input) self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) preds = outputs[0] post_result = self.postprocess_op( preds, segment_offset_ids=[data[6]], ocr_infos=[data[7]]) elapse = time.time() - starttime return post_result, elapse def main(args): image_file_list = get_image_file_list(args.image_dir) ser_predictor = SerPredictor(args) count = 0 total_time = 0 os.makedirs(args.output, exist_ok=True) with open( os.path.join(args.output, 'infer.txt'), mode='w', encoding='utf-8') as f_w: for image_file in image_file_list: img, flag = check_and_read_gif(image_file) if not flag: img = cv2.imread(image_file) img = img[:, :, ::-1] if img is None: logger.info("error in loading image:{}".format(image_file)) continue ser_res, elapse = ser_predictor(img) ser_res = ser_res[0] res_str = '{}\t{}\n'.format( image_file, json.dumps( { "ocr_info": ser_res, }, ensure_ascii=False)) f_w.write(res_str) img_res = draw_ser_results( image_file, ser_res, font_path=args.vis_font_path, ) img_save_path = os.path.join(args.output, os.path.basename(image_file)) cv2.imwrite(img_save_path, img_res) logger.info("save vis result to {}".format(img_save_path)) if count > 0: total_time += elapse count += 1 logger.info("Predict time of {}: {}".format(image_file, elapse)) if __name__ == "__main__": main(parse_args())