#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid def AdamDecay(params, parameter_list=None): """ define optimizer function args: params(dict): the super parameters parameter_list (list): list of Variable names to update to minimize loss return: """ base_lr = params['base_lr'] beta1 = params['beta1'] beta2 = params['beta2'] if 'decay' in params: params = params['decay'] decay_mode = params['function'] step_each_epoch = params['step_each_epoch'] total_epoch = params['total_epoch'] if decay_mode == "cosine_decay": base_lr = fluid.layers.cosine_decay( learning_rate=base_lr, step_each_epoch=step_each_epoch, epochs=total_epoch) optimizer = fluid.optimizer.Adam( learning_rate=base_lr, beta1=beta1, beta2=beta2, parameter_list=parameter_list) return optimizer