# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import cv2 import numpy as np import json from PIL import Image, ImageDraw, ImageFont import math from paddle import inference def str2bool(v): return v.lower() in ("true", "t", "1") inference_args_list = [ # params for prediction engine { 'name': 'use_gpu', 'type': str2bool, 'default': True }, { 'name': 'ir_optim', 'type': str2bool, 'default': True }, { 'name': 'use_tensorrt', 'type': str2bool, 'default': False }, { 'name': 'use_fp16', 'type': str2bool, 'default': False }, { 'name': 'enable_mkldnn', 'type': str2bool, 'default': False }, { 'name': 'use_pdserving', 'type': str2bool, 'default': False }, { 'name': 'use_mp', 'type': str2bool, 'default': False }, { 'name': 'total_process_num', 'type': int, 'default': 1 }, { 'name': 'process_id', 'type': int, 'default': 0 }, { 'name': 'gpu_mem', 'type': int, 'default': 500 }, # params for text detector { 'name': 'image_dir', 'type': str, 'default': None }, { 'name': 'det_algorithm', 'type': str, 'default': 'DB' }, { 'name': 'det_model_dir', 'type': str, 'default': None }, { 'name': 'det_limit_side_len', 'type': float, 'default': 960 }, { 'name': 'det_limit_type', 'type': str, 'default': 'max' }, # DB parmas { 'name': 'det_db_thresh', 'type': float, 'default': 0.3 }, { 'name': 'det_db_box_thresh', 'type': float, 'default': 0.5 }, { 'name': 'det_db_unclip_ratio', 'type': float, 'default': 1.6 }, { 'name': 'max_batch_size', 'type': int, 'default': 10 }, { 'name': 'use_dilation', 'type': str2bool, 'default': False }, { 'name': 'det_db_score_mode', 'type': str, 'default': 'fast' }, # EAST parmas { 'name': 'det_east_score_thresh', 'type': float, 'default': 0.8 }, { 'name': 'det_east_cover_thresh', 'type': float, 'default': 0.1 }, { 'name': 'det_east_nms_thresh', 'type': float, 'default': 0.2 }, # SAST parmas { 'name': 'det_sast_score_thresh', 'type': float, 'default': 0.5 }, { 'name': 'det_sast_nms_thresh', 'type': float, 'default': 0.2 }, { 'name': 'det_sast_polygon', 'type': str2bool, 'default': False }, # params for text recognizer { 'name': 'rec_algorithm', 'type': str, 'default': 'CRNN' }, { 'name': 'rec_model_dir', 'type': str, 'default': None }, { 'name': 'rec_image_shape', 'type': str, 'default': '3, 32, 320' }, { 'name': 'rec_char_type', 'type': str, 'default': "ch" }, { 'name': 'rec_batch_num', 'type': int, 'default': 6 }, { 'name': 'max_text_length', 'type': int, 'default': 25 }, { 'name': 'rec_char_dict_path', 'type': str, 'default': './ppocr/utils/ppocr_keys_v1.txt' }, { 'name': 'use_space_char', 'type': str2bool, 'default': True }, { 'name': 'vis_font_path', 'type': str, 'default': './doc/fonts/simfang.ttf' }, { 'name': 'drop_score', 'type': float, 'default': 0.5 }, # params for e2e { 'name': 'e2e_algorithm', 'type': str, 'default': 'PGNet' }, { 'name': 'e2e_model_dir', 'type': str, 'default': None }, { 'name': 'e2e_limit_side_len', 'type': float, 'default': 768 }, { 'name': 'e2e_limit_type', 'type': str, 'default': 'max' }, # PGNet parmas { 'name': 'e2e_pgnet_score_thresh', 'type': float, 'default': 0.5 }, { 'name': 'e2e_char_dict_path', 'type': str, 'default': './ppocr/utils/ic15_dict.txt' }, { 'name': 'e2e_pgnet_valid_set', 'type': str, 'default': 'totaltext' }, { 'name': 'e2e_pgnet_polygon', 'type': str2bool, 'default': True }, { 'name': 'e2e_pgnet_mode', 'type': str, 'default': 'fast' }, # params for text classifier { 'name': 'use_angle_cls', 'type': str2bool, 'default': False }, { 'name': 'cls_model_dir', 'type': str, 'default': None }, { 'name': 'cls_image_shape', 'type': str, 'default': '3, 48, 192' }, { 'name': 'label_list', 'type': list, 'default': ['0', '180'] }, { 'name': 'cls_batch_num', 'type': int, 'default': 6 }, { 'name': 'cls_thresh', 'type': float, 'default': 0.9 }, ] def parse_args(): parser = argparse.ArgumentParser() for item in inference_args_list: parser.add_argument( '--' + item['name'], type=item['type'], default=item['default']) return parser.parse_args() def create_predictor(args, mode, logger): if mode == "det": model_dir = args.det_model_dir elif mode == 'cls': model_dir = args.cls_model_dir elif mode == 'rec': model_dir = args.rec_model_dir else: model_dir = args.e2e_model_dir if model_dir is None: logger.info("not find {} model file path {}".format(mode, model_dir)) sys.exit(0) model_file_path = model_dir + "/inference.pdmodel" params_file_path = model_dir + "/inference.pdiparams" if not os.path.exists(model_file_path): logger.info("not find model file path {}".format(model_file_path)) sys.exit(0) if not os.path.exists(params_file_path): logger.info("not find params file path {}".format(params_file_path)) sys.exit(0) config = inference.Config(model_file_path, params_file_path) if args.use_gpu: config.enable_use_gpu(args.gpu_mem, 0) if args.use_tensorrt: config.enable_tensorrt_engine( precision_mode=inference.PrecisionType.Half if args.use_fp16 else inference.PrecisionType.Float32, max_batch_size=args.max_batch_size) else: config.disable_gpu() config.set_cpu_math_library_num_threads(6) if args.enable_mkldnn: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() # TODO LDOUBLEV: fix mkldnn bug when bach_size > 1 # config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'}) args.rec_batch_num = 1 # enable memory optim config.enable_memory_optim() config.disable_glog_info() config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") config.switch_use_feed_fetch_ops(False) # create predictor predictor = inference.create_predictor(config) input_names = predictor.get_input_names() for name in input_names: input_tensor = predictor.get_input_handle(name) output_names = predictor.get_output_names() output_tensors = [] for output_name in output_names: output_tensor = predictor.get_output_handle(output_name) output_tensors.append(output_tensor) return predictor, input_tensor, output_tensors def draw_e2e_res(dt_boxes, strs, img_path): src_im = cv2.imread(img_path) for box, str in zip(dt_boxes, strs): box = box.astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) cv2.putText( src_im, str, org=(int(box[0, 0, 0]), int(box[0, 0, 1])), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.7, color=(0, 255, 0), thickness=1) return src_im def draw_text_det_res(dt_boxes, img_path): src_im = cv2.imread(img_path) for box in dt_boxes: box = np.array(box).astype(np.int32).reshape(-1, 2) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) return src_im def resize_img(img, input_size=600): """ resize img and limit the longest side of the image to input_size """ img = np.array(img) im_shape = img.shape im_size_max = np.max(im_shape[0:2]) im_scale = float(input_size) / float(im_size_max) img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) return img def draw_ocr(image, boxes, txts=None, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf"): """ Visualize the results of OCR detection and recognition args: image(Image|array): RGB image boxes(list): boxes with shape(N, 4, 2) txts(list): the texts scores(list): txxs corresponding scores drop_score(float): only scores greater than drop_threshold will be visualized font_path: the path of font which is used to draw text return(array): the visualized img """ if scores is None: scores = [1] * len(boxes) box_num = len(boxes) for i in range(box_num): if scores is not None and (scores[i] < drop_score or math.isnan(scores[i])): continue box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) if txts is not None: img = np.array(resize_img(image, input_size=600)) txt_img = text_visual( txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score, font_path=font_path) img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) return img return image def draw_ocr_box_txt(image, boxes, txts, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf"): h, w = image.height, image.width img_left = image.copy() img_right = Image.new('RGB', (w, h), (255, 255, 255)) import random random.seed(0) draw_left = ImageDraw.Draw(img_left) draw_right = ImageDraw.Draw(img_right) for idx, (box, txt) in enumerate(zip(boxes, txts)): if scores is not None and scores[idx] < drop_score: continue color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) draw_left.polygon(box, fill=color) draw_right.polygon( [ box[0][0], box[0][1], box[1][0], box[1][1], box[2][0], box[2][1], box[3][0], box[3][1] ], outline=color) box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][ 1])**2) box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][ 1])**2) if box_height > 2 * box_width: font_size = max(int(box_width * 0.9), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") cur_y = box[0][1] for c in txt: char_size = font.getsize(c) draw_right.text( (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font) cur_y += char_size[1] else: font_size = max(int(box_height * 0.8), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") draw_right.text( [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font) img_left = Image.blend(image, img_left, 0.5) img_show = Image.new('RGB', (w * 2, h), (255, 255, 255)) img_show.paste(img_left, (0, 0, w, h)) img_show.paste(img_right, (w, 0, w * 2, h)) return np.array(img_show) def str_count(s): """ Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters """ import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if c in string.ascii_letters or c.isdigit() or c.isspace(): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return s_len - math.ceil(en_dg_count / 2) def text_visual(texts, scores, img_h=400, img_w=600, threshold=0., font_path="./doc/simfang.ttf"): """ create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array): """ if scores is not None: assert len(texts) == len( scores), "The number of txts and corresponding scores must match" def create_blank_img(): blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 blank_img[:, img_w - 1:] = 0 blank_img = Image.fromarray(blank_img).convert("RGB") draw_txt = ImageDraw.Draw(blank_img) return blank_img, draw_txt blank_img, draw_txt = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") gap = font_size + 5 txt_img_list = [] count, index = 1, 0 for idx, txt in enumerate(texts): index += 1 if scores[idx] < threshold or math.isnan(scores[idx]): index -= 1 continue first_line = True while str_count(txt) >= img_w // font_size - 4: tmp = txt txt = tmp[:img_w // font_size - 4] if first_line: new_txt = str(index) + ': ' + txt first_line = False else: new_txt = ' ' + txt draw_txt.text((0, gap * count), new_txt, txt_color, font=font) txt = tmp[img_w // font_size - 4:] if count >= img_h // gap - 1: txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 if first_line: new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx]) else: new_txt = " " + txt + " " + '%.3f' % (scores[idx]) draw_txt.text((0, gap * count), new_txt, txt_color, font=font) # whether add new blank img or not if count >= img_h // gap - 1 and idx + 1 < len(texts): txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if len(txt_img_list) == 1: blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img) def base64_to_cv2(b64str): import base64 data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def draw_boxes(image, boxes, scores=None, drop_score=0.5): if scores is None: scores = [1] * len(boxes) for (box, score) in zip(boxes, scores): if score < drop_score: continue box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) return image if __name__ == '__main__': test_img = "./doc/test_v2" predict_txt = "./doc/predict.txt" f = open(predict_txt, 'r') data = f.readlines() img_path, anno = data[0].strip().split('\t') img_name = os.path.basename(img_path) img_path = os.path.join(test_img, img_name) image = Image.open(img_path) data = json.loads(anno) boxes, txts, scores = [], [], [] for dic in data: boxes.append(dic['points']) txts.append(dic['transcription']) scores.append(round(dic['scores'], 3)) new_img = draw_ocr(image, boxes, txts, scores) cv2.imwrite(img_name, new_img)