# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import json import paddle from ppocr.data import create_operators, transform from ppocr.modeling.architectures import build_model from ppocr.postprocess import build_post_process from ppocr.utils.save_load import init_model, load_dygraph_params from ppocr.utils.utility import get_image_file_list import tools.program as program def draw_det_res(dt_boxes, config, img, img_name, save_path): if len(dt_boxes) > 0: import cv2 src_im = img for box in dt_boxes: box = box.astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) if not os.path.exists(save_path): os.makedirs(save_path) save_path = os.path.join(save_path, os.path.basename(img_name)) cv2.imwrite(save_path, src_im) logger.info("The detected Image saved in {}".format(save_path)) def main(): global_config = config['Global'] # build model model = build_model(config['Architecture']) _ = load_dygraph_params(config, model, logger, None) # build post process post_process_class = build_post_process(config['PostProcess']) # create data ops transforms = [] for op in config['Eval']['dataset']['transforms']: op_name = list(op)[0] if 'Label' in op_name: continue elif op_name == 'KeepKeys': op[op_name]['keep_keys'] = ['image', 'shape'] transforms.append(op) ops = create_operators(transforms, global_config) save_res_path = config['Global']['save_res_path'] if not os.path.exists(os.path.dirname(save_res_path)): os.makedirs(os.path.dirname(save_res_path)) model.eval() with open(save_res_path, "wb") as fout: for file in get_image_file_list(config['Global']['infer_img']): logger.info("infer_img: {}".format(file)) with open(file, 'rb') as f: img = f.read() data = {'image': img} batch = transform(data, ops) images = np.expand_dims(batch[0], axis=0) shape_list = np.expand_dims(batch[1], axis=0) images = paddle.to_tensor(images) preds = model(images) post_result = post_process_class(preds, shape_list) src_img = cv2.imread(file) dt_boxes_json = [] # parser boxes if post_result is dict if isinstance(post_result, dict): det_box_json = {} for k in post_result.keys(): boxes = post_result[k][0]['points'] dt_boxes_list = [] for box in boxes: tmp_json = {"transcription": ""} tmp_json['points'] = box.tolist() dt_boxes_list.append(tmp_json) det_box_json[k] = dt_boxes_list save_det_path = os.path.dirname(config['Global'][ 'save_res_path']) + "/det_results_{}/".format(k) draw_det_res(boxes, config, src_img, file, save_det_path) else: boxes = post_result[0]['points'] dt_boxes_json = [] # write result for box in boxes: tmp_json = {"transcription": ""} tmp_json['points'] = box.tolist() dt_boxes_json.append(tmp_json) save_det_path = os.path.dirname(config['Global'][ 'save_res_path']) + "/det_results/" draw_det_res(boxes, config, src_img, file, save_det_path) otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n" fout.write(otstr.encode()) save_det_path = os.path.dirname(config['Global'][ 'save_res_path']) + "/det_results/" draw_det_res(boxes, config, src_img, file, save_det_path) logger.info("success!") if __name__ == '__main__': config, device, logger, vdl_writer = program.preprocess() main()