# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn, ParamAttr from paddle.nn import functional as F import numpy as np class ConvBNLayer(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride=1, groups=1, act=None, name=None): super(ConvBNLayer, self).__init__() self.conv = nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=groups, weight_attr=ParamAttr(name=name + "_weights"), bias_attr=False) bn_name = "bn_" + name self.bn = nn.BatchNorm( out_channels, act=act, param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance') def forward(self, x): x = self.conv(x) x = self.bn(x) return x class LocalizationNetwork(nn.Layer): def __init__(self, in_channels, num_fiducial, loc_lr, model_name): super(LocalizationNetwork, self).__init__() self.F = num_fiducial F = num_fiducial if model_name == "large": num_filters_list = [64, 128, 256, 512] fc_dim = 256 else: num_filters_list = [16, 32, 64, 128] fc_dim = 64 self.block_list = [] for fno in range(0, len(num_filters_list)): num_filters = num_filters_list[fno] name = "loc_conv%d" % fno conv = self.add_sublayer( name, ConvBNLayer( in_channels=in_channels, out_channels=num_filters, kernel_size=3, act='relu', name=name)) self.block_list.append(conv) if fno == len(num_filters_list) - 1: pool = nn.AdaptiveAvgPool2D(1) else: pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) in_channels = num_filters self.block_list.append(pool) name = "loc_fc1" self.fc1 = nn.Linear( in_channels, fc_dim, weight_attr=ParamAttr( learning_rate=loc_lr, name=name + "_w"), bias_attr=ParamAttr(name=name + '.b_0'), name=name) # Init fc2 in LocalizationNetwork initial_bias = self.get_initial_fiducials() initial_bias = initial_bias.reshape(-1) name = "loc_fc2" param_attr = ParamAttr( learning_rate=loc_lr, initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])), name=name + "_w") bias_attr = ParamAttr( learning_rate=loc_lr, initializer=nn.initializer.Assign(initial_bias), name=name + "_b") self.fc2 = nn.Linear( fc_dim, F * 2, weight_attr=param_attr, bias_attr=bias_attr, name=name) self.out_channels = F * 2 def forward(self, x): """ Estimating parameters of geometric transformation Args: image: input Return: batch_C_prime: the matrix of the geometric transformation """ B = x.shape[0] i = 0 for block in self.block_list: x = block(x) x = x.squeeze(axis=2).squeeze(axis=2) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = x.reshape(shape=[-1, self.F, 2]) return x def get_initial_fiducials(self): """ see RARE paper Fig. 6 (a) """ F = self.F ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2)) ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2)) ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2)) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) return initial_bias class GridGenerator(nn.Layer): def __init__(self, in_channels, num_fiducial): super(GridGenerator, self).__init__() self.eps = 1e-6 self.F = num_fiducial name = "ex_fc" initializer = nn.initializer.Constant(value=0.0) param_attr = ParamAttr( learning_rate=0.0, initializer=initializer, name=name + "_w") bias_attr = ParamAttr( learning_rate=0.0, initializer=initializer, name=name + "_b") self.fc = nn.Linear( in_channels, 6, weight_attr=param_attr, bias_attr=bias_attr, name=name) def forward(self, batch_C_prime, I_r_size): """ Generate the grid for the grid_sampler. Args: batch_C_prime: the matrix of the geometric transformation I_r_size: the shape of the input image Return: batch_P_prime: the grid for the grid_sampler """ C = self.build_C_paddle() P = self.build_P_paddle(I_r_size) inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32') # inv_delta_C_tensor = paddle.zeros((23,23)).astype('float32') P_hat_tensor = self.build_P_hat_paddle( C, paddle.to_tensor(P)).astype('float32') inv_delta_C_tensor.stop_gradient = True P_hat_tensor.stop_gradient = True batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime) batch_C_ex_part_tensor.stop_gradient = True batch_C_prime_with_zeros = paddle.concat( [batch_C_prime, batch_C_ex_part_tensor], axis=1) batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros) batch_P_prime = paddle.matmul(P_hat_tensor, batch_T) return batch_P_prime def build_C_paddle(self): """ Return coordinates of fiducial points in I_r; C """ F = self.F ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2)) ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)]) ctrl_pts_y_bottom = paddle.ones([int(F / 2)]) ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0) return C # F x 2 def build_P_paddle(self, I_r_size): I_r_height, I_r_width = I_r_size I_r_grid_x = ( paddle.arange(-I_r_width, I_r_width, 2).astype('float32') + 1.0 ) / I_r_width # self.I_r_width I_r_grid_y = ( paddle.arange(-I_r_height, I_r_height, 2).astype('float32') + 1.0 ) / I_r_height # self.I_r_height # P: self.I_r_width x self.I_r_height x 2 P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2) P = paddle.transpose(P, perm=[1, 0, 2]) # n (= self.I_r_width x self.I_r_height) x 2 return P.reshape([-1, 2]) def build_inv_delta_C_paddle(self, C): """ Return inv_delta_C which is needed to calculate T """ F = self.F hat_C = paddle.zeros((F, F), dtype='float32') # F x F for i in range(0, F): for j in range(i, F): if i == j: hat_C[i, j] = 1 else: r = paddle.norm(C[i] - C[j]) hat_C[i, j] = r hat_C[j, i] = r hat_C = (hat_C**2) * paddle.log(hat_C) delta_C = paddle.concat( # F+3 x F+3 [ paddle.concat( [paddle.ones((F, 1)), C, hat_C], axis=1), # F x F+3 paddle.concat( [paddle.zeros((2, 3)), paddle.transpose( C, perm=[1, 0])], axis=1), # 2 x F+3 paddle.concat( [paddle.zeros((1, 3)), paddle.ones((1, F))], axis=1) # 1 x F+3 ], axis=0) inv_delta_C = paddle.inverse(delta_C) return inv_delta_C # F+3 x F+3 def build_P_hat_paddle(self, C, P): F = self.F eps = self.eps n = P.shape[0] # n (= self.I_r_width x self.I_r_height) # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2 P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1)) C_tile = paddle.unsqueeze(C, axis=0) # 1 x F x 2 P_diff = P_tile - C_tile # n x F x 2 # rbf_norm: n x F rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False) # rbf: n x F rbf = paddle.multiply( paddle.square(rbf_norm), paddle.log(rbf_norm + eps)) P_hat = paddle.concat([paddle.ones((n, 1)), P, rbf], axis=1) return P_hat # n x F+3 def get_expand_tensor(self, batch_C_prime): B, H, C = batch_C_prime.shape batch_C_prime = batch_C_prime.reshape([B, H * C]) batch_C_ex_part_tensor = self.fc(batch_C_prime) batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2]) return batch_C_ex_part_tensor class TPS(nn.Layer): def __init__(self, in_channels, num_fiducial, loc_lr, model_name): super(TPS, self).__init__() self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr, model_name) self.grid_generator = GridGenerator(self.loc_net.out_channels, num_fiducial) self.out_channels = in_channels def forward(self, image): image.stop_gradient = False batch_C_prime = self.loc_net(image) batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:]) batch_P_prime = batch_P_prime.reshape( [-1, image.shape[2], image.shape[3], 2]) batch_I_r = F.grid_sample(x=image, grid=batch_P_prime) return batch_I_r