# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import json import paddle from ppocr.data import create_operators, transform from ppocr.modeling.architectures import build_model from ppocr.postprocess import build_post_process from ppocr.utils.save_load import load_model from ppocr.utils.visual import draw_ser_results from ppocr.utils.utility import get_image_file_list, load_vqa_bio_label_maps import tools.program as program def to_tensor(data): import numbers from collections import defaultdict data_dict = defaultdict(list) to_tensor_idxs = [] for idx, v in enumerate(data): if isinstance(v, (np.ndarray, paddle.Tensor, numbers.Number)): if idx not in to_tensor_idxs: to_tensor_idxs.append(idx) data_dict[idx].append(v) for idx in to_tensor_idxs: data_dict[idx] = paddle.to_tensor(data_dict[idx]) return list(data_dict.values()) class SerPredictor(object): def __init__(self, config): global_config = config['Global'] # build post process self.post_process_class = build_post_process(config['PostProcess'], global_config) # build model self.model = build_model(config['Architecture']) load_model( config, self.model, model_type=config['Architecture']["model_type"]) from paddleocr import PaddleOCR self.ocr_engine = PaddleOCR(use_angle_cls=False, show_log=False) # create data ops transforms = [] for op in config['Eval']['dataset']['transforms']: op_name = list(op)[0] if 'Label' in op_name: op[op_name]['ocr_engine'] = self.ocr_engine elif op_name == 'KeepKeys': op[op_name]['keep_keys'] = [ 'input_ids', 'labels', 'bbox', 'image', 'attention_mask', 'token_type_ids', 'segment_offset_id', 'ocr_info', 'entities' ] transforms.append(op) if config["Global"].get("infer_mode", None) is None: global_config['infer_mode'] = True self.ops = create_operators(config['Eval']['dataset']['transforms'], global_config) self.model.eval() def __call__(self, data): with open(data["img_path"], 'rb') as f: img = f.read() data["image"] = img batch = transform(data, self.ops) batch = to_tensor(batch) preds = self.model(batch) post_result = self.post_process_class( preds, attention_masks=batch[4], segment_offset_ids=batch[6], ocr_infos=batch[7]) return post_result, batch if __name__ == '__main__': config, device, logger, vdl_writer = program.preprocess() os.makedirs(config['Global']['save_res_path'], exist_ok=True) ser_engine = SerPredictor(config) if config["Global"].get("infer_mode", None) is False: data_dir = config['Eval']['dataset']['data_dir'] with open(config['Global']['infer_img'], "rb") as f: infer_imgs = f.readlines() else: infer_imgs = get_image_file_list(config['Global']['infer_img']) with open( os.path.join(config['Global']['save_res_path'], "infer_results.txt"), "w", encoding='utf-8') as fout: for idx, info in enumerate(infer_imgs): if config["Global"].get("infer_mode", None) is False: data_line = info.decode('utf-8') substr = data_line.strip("\n").split("\t") img_path = os.path.join(data_dir, substr[0]) data = {'img_path': img_path, 'label': substr[1]} else: img_path = info data = {'img_path': img_path} save_img_path = os.path.join( config['Global']['save_res_path'], os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg") logger.info("process: [{}/{}], save result to {}".format( idx, len(infer_imgs), save_img_path)) result, _ = ser_engine(data) result = result[0] fout.write(img_path + "\t" + json.dumps( { "ocr_info": result, }, ensure_ascii=False) + "\n") img_res = draw_ser_results(img_path, result) cv2.imwrite(save_img_path, img_res)