# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import nn class VQASerTokenLayoutLMLoss(nn.Layer): def __init__(self, num_classes): super().__init__() self.loss_class = nn.CrossEntropyLoss() self.num_classes = num_classes self.ignore_index = self.loss_class.ignore_index def forward(self, predicts, batch): labels = batch[1] attention_mask = batch[4] if attention_mask is not None: active_loss = attention_mask.reshape([-1, ]) == 1 active_outputs = predicts.reshape( [-1, self.num_classes])[active_loss] active_labels = labels.reshape([-1, ])[active_loss] loss = self.loss_class(active_outputs, active_labels) else: loss = self.loss_class( predicts.reshape([-1, self.num_classes]), labels.reshape([-1, ])) return {'loss': loss}