// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include namespace PaddleOCR { void StructureLayoutRecognizer::Run(cv::Mat img, std::vector &result, std::vector ×) { std::chrono::duration preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::chrono::duration inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::chrono::duration postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); // preprocess auto preprocess_start = std::chrono::steady_clock::now(); cv::Mat srcimg; img.copyTo(srcimg); cv::Mat resize_img; this->resize_op_.Run(srcimg, resize_img, 800, 608); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); this->permute_op_.Run(&resize_img, input.data()); auto preprocess_end = std::chrono::steady_clock::now(); preprocess_diff += preprocess_end - preprocess_start; // inference. auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputHandle(input_names[0]); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); auto inference_start = std::chrono::steady_clock::now(); input_t->CopyFromCpu(input.data()); this->predictor_->Run(); // Get output tensor std::vector> out_tensor_list; std::vector> output_shape_list; auto output_names = this->predictor_->GetOutputNames(); for (int j = 0; j < output_names.size(); j++) { auto output_tensor = this->predictor_->GetOutputHandle(output_names[j]); std::vector output_shape = output_tensor->shape(); int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies()); output_shape_list.push_back(output_shape); std::vector out_data; out_data.resize(out_num); output_tensor->CopyToCpu(out_data.data()); out_tensor_list.push_back(out_data); } auto inference_end = std::chrono::steady_clock::now(); inference_diff += inference_end - inference_start; // postprocess auto postprocess_start = std::chrono::steady_clock::now(); std::vector bbox_num; int reg_max = 0; for (int i = 0; i < out_tensor_list.size(); i++) { if (i == this->post_processor_.fpn_stride_.size()) { reg_max = output_shape_list[i][2] / 4; break; } } std::vector ori_shape = {srcimg.rows, srcimg.cols}; std::vector resize_shape = {resize_img.rows, resize_img.cols}; this->post_processor_.Run(result, out_tensor_list, ori_shape, resize_shape, reg_max); bbox_num.push_back(result.size()); auto postprocess_end = std::chrono::steady_clock::now(); postprocess_diff += postprocess_end - postprocess_start; times.push_back(double(preprocess_diff.count() * 1000)); times.push_back(double(inference_diff.count() * 1000)); times.push_back(double(postprocess_diff.count() * 1000)); } void StructureLayoutRecognizer::LoadModel(const std::string &model_dir) { paddle_infer::Config config; if (Utility::PathExists(model_dir + "/inference.pdmodel") && Utility::PathExists(model_dir + "/inference.pdiparams")) { config.SetModel(model_dir + "/inference.pdmodel", model_dir + "/inference.pdiparams"); } else if (Utility::PathExists(model_dir + "/model.pdmodel") && Utility::PathExists(model_dir + "/model.pdiparams")) { config.SetModel(model_dir + "/model.pdmodel", model_dir + "/model.pdiparams"); } else { std::cerr << "[ERROR] not find model.pdiparams or inference.pdiparams in " << model_dir << std::endl; exit(1); } if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); if (this->use_tensorrt_) { auto precision = paddle_infer::Config::Precision::kFloat32; if (this->precision_ == "fp16") { precision = paddle_infer::Config::Precision::kHalf; } if (this->precision_ == "int8") { precision = paddle_infer::Config::Precision::kInt8; } config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false); if (!Utility::PathExists("./trt_layout_shape.txt")) { config.CollectShapeRangeInfo("./trt_layout_shape.txt"); } else { config.EnableTunedTensorRtDynamicShape("./trt_layout_shape.txt", true); } } } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } // false for zero copy tensor config.SwitchUseFeedFetchOps(false); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); config.DisableGlogInfo(); this->predictor_ = paddle_infer::CreatePredictor(config); } } // namespace PaddleOCR