Global: algorithm: CRNN use_gpu: true epoch_num: 3000 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec_CRNN save_epoch_step: 3 eval_batch_step: 2000 train_batch_size_per_card: 256 test_batch_size_per_card: 256 image_shape: [3, 32, 320] max_text_length: 25 character_type: ch character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt loss_type: ctc reader_yml: ./configs/rec/rec_chinese_reader.yml pretrain_weights: checkpoints: save_inference_dir: Architecture: function: ppocr.modeling.architectures.rec_model,RecModel Backbone: function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3 scale: 0.5 model_name: small Head: function: ppocr.modeling.heads.rec_ctc_head,CTCPredict encoder_type: rnn SeqRNN: hidden_size: 48 Loss: function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss Optimizer: function: ppocr.optimizer,AdamDecay base_lr: 0.0005 beta1: 0.9 beta2: 0.999