# -*- coding:utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys sys.path.insert(0, ".") import copy from paddlehub.common.logger import logger from paddlehub.module.module import moduleinfo, runnable, serving import cv2 import paddlehub as hub from tools.infer.utility import base64_to_cv2 from tools.infer.predict_cls import TextClassifier from tools.infer.utility import parse_args @moduleinfo( name="ocr_cls", version="1.0.0", summary="ocr recognition service", author="paddle-dev", author_email="paddle-dev@baidu.com", type="cv/text_recognition") class OCRCls(hub.Module): def _initialize(self, use_gpu=False, enable_mkldnn=False): """ initialize with the necessary elements """ cfg = self.merge_configs() cfg.use_gpu = use_gpu if use_gpu: try: _places = os.environ["CUDA_VISIBLE_DEVICES"] int(_places[0]) print("use gpu: ", use_gpu) print("CUDA_VISIBLE_DEVICES: ", _places) cfg.gpu_mem = 8000 except: raise RuntimeError( "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id." ) cfg.ir_optim = True cfg.enable_mkldnn = enable_mkldnn self.text_classifier = TextClassifier(cfg) def merge_configs(self, ): # deafult cfg backup_argv = copy.deepcopy(sys.argv) sys.argv = sys.argv[:1] cfg = parse_args() from ocr_det.params import read_params update_cfg_map = vars(read_params()) for key in update_cfg_map: cfg.__setattr__(key, update_cfg_map[key]) sys.argv = copy.deepcopy(backup_argv) return cfg def read_images(self, paths=[]): images = [] for img_path in paths: assert os.path.isfile( img_path), "The {} isn't a valid file.".format(img_path) img = cv2.imread(img_path) if img is None: logger.info("error in loading image:{}".format(img_path)) continue images.append(img) return images def predict(self, images=[], paths=[]): """ Get the text angle in the predicted images. Args: images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths paths (list[str]): The paths of images. If paths not images Returns: res (list): The result of text detection box and save path of images. """ if images != [] and isinstance(images, list) and paths == []: predicted_data = images elif images == [] and isinstance(paths, list) and paths != []: predicted_data = self.read_images(paths) else: raise TypeError("The input data is inconsistent with expectations.") assert predicted_data != [], "There is not any image to be predicted. Please check the input data." img_list = [] for img in predicted_data: if img is None: continue img_list.append(img) rec_res_final = [] try: img_list, cls_res, predict_time = self.text_classifier(img_list) for dno in range(len(cls_res)): angle, score = cls_res[dno] rec_res_final.append({ 'angle': angle, 'confidence': float(score), }) except Exception as e: print(e) return [[]] return [rec_res_final] @serving def serving_method(self, images, **kwargs): """ Run as a service. """ images_decode = [base64_to_cv2(image) for image in images] results = self.predict(images_decode, **kwargs) return results if __name__ == '__main__': ocr = OCRCls() image_path = [ './doc/imgs_words/ch/word_1.jpg', './doc/imgs_words/ch/word_2.jpg', './doc/imgs_words/ch/word_3.jpg', ] res = ocr.predict(paths=image_path) print(res)