# TIPC Linux端补充训练功能测试 Linux端基础训练预测功能测试的主程序为test_train_python.sh,可以测试基于Python的模型训练、评估等基本功能,包括裁剪、量化、蒸馏训练。 ![](./test_tipc/tipc_train.png) 测试链条如上图所示,主要测试内容有带共享权重,自定义OP的模型的正常训练和slim相关功能训练流程是否正常。 # 2. 测试流程 本节介绍补充链条的测试流程 ## 2.1 安装依赖 - 安装PaddlePaddle >= 2.2 - 安装其他依赖 ``` pip3 install -r requirements.txt ``` ## 2.2 功能测试 `test_train_python.sh`包含2种运行模式,每种模式的运行数据不同,分别用于测试训练是否正常,分别是: - 模式1:lite_train_lite_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度; ``` bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python.txt 'lite_train_lite_infer' ``` - 模式2:whole_train_whole_infer,使用全量数据训练,用于快速验证训练到预测的走通流程,验证模型最终训练精度; ``` bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python.txt 'whole_train_whole_infer' ``` 如果是运行量化裁剪等训练方式,需要使用不同的配置文件。量化训练的测试指令如下: ``` bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python_PACT.txt 'lite_train_lite_infer' ``` 同理,FPGM裁剪的运行方式如下: ``` bash test_tipc/test_train_python.sh ./test_tipc/train_infer_python_FPGM.txt 'lite_train_lite_infer' ``` 运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如'lite_train_lite_infer'模式运行后,在test_tipc/extra_output文件夹有以下文件: ``` test_tipc/output/ |- results_python.log # 运行指令状态的日志 ``` 其中results_python.log中包含了每条指令的运行状态,如果运行成功会输出: ``` Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o use_gpu=True epoch=20 AMP.use_amp=True TRAIN.batch_size=1280 use_custom_relu=False model_type=cls MODEL.siamese=False ! Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o use_gpu=True epoch=2 AMP.use_amp=True TRAIN.batch_size=1280 use_custom_relu=False model_type=cls MODEL.siamese=False ! Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o use_gpu=True epoch=2 AMP.use_amp=True TRAIN.batch_size=1280 use_custom_relu=False model_type=cls MODEL.siamese=True ! Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o use_gpu=True epoch=2 AMP.use_amp=True TRAIN.batch_size=1280 use_custom_relu=False model_type=cls_distill MODEL.siamese=False ! Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o use_gpu=True epoch=2 AMP.use_amp=True TRAIN.batch_size=1280 use_custom_relu=False model_type=cls_distill MODEL.siamese=True ! Run successfully with command - python3.7 train.py -c mv3_large_x0_5.yml -o use_gpu=True epoch=2 AMP.use_amp=True TRAIN.batch_size=1280 use_custom_relu=False model_type=cls_distill_multiopt MODEL.siamese=False ! ```