# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import copy import paddle __all__ = ['build_optimizer'] def build_lr_scheduler(lr_config, epochs, step_each_epoch): from . import learning_rate lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch}) if 'name' in lr_config: lr_name = lr_config.pop('name') lr = getattr(learning_rate, lr_name)(**lr_config)() else: lr = lr_config['learning_rate'] return lr def build_optimizer(config, epochs, step_each_epoch, parameters): from . import regularizer, optimizer config = copy.deepcopy(config) # step1 build lr lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch) # step2 build regularization if 'regularizer' in config and config['regularizer'] is not None: reg_config = config.pop('regularizer') reg_name = reg_config.pop('name') + 'Decay' reg = getattr(regularizer, reg_name)(**reg_config)() else: reg = None # step3 build optimizer optim_name = config.pop('name') if 'clip_norm' in config: clip_norm = config.pop('clip_norm') grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm) else: grad_clip = None optim = getattr(optimizer, optim_name)(learning_rate=lr, weight_decay=reg, grad_clip=grad_clip, **config) return optim(parameters), lr