# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from paddle.nn import functional as F import re class BaseRecLabelDecode(object): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False): self.beg_str = "sos" self.end_str = "eos" self.reverse = False self.character_str = [] if character_dict_path is None: self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) else: with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str.append(line) if use_space_char: self.character_str.append(" ") dict_character = list(self.character_str) if 'arabic' in character_dict_path: self.reverse = True dict_character = self.add_special_char(dict_character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def pred_reverse(self, pred): pred_re = [] c_current = '' for c in pred: if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)): if c_current != '': pred_re.append(c_current) pred_re.append(c) c_current = '' else: c_current += c if c_current != '': pred_re.append(c_current) return ''.join(pred_re[::-1]) def add_special_char(self, dict_character): return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): selection = np.ones(len(text_index[batch_idx]), dtype=bool) if is_remove_duplicate: selection[1:] = text_index[batch_idx][1:] != text_index[ batch_idx][:-1] for ignored_token in ignored_tokens: selection &= text_index[batch_idx] != ignored_token char_list = [ self.character[text_id] for text_id in text_index[batch_idx][selection] ] if text_prob is not None: conf_list = text_prob[batch_idx][selection] else: conf_list = [1] * len(selection) if len(conf_list) == 0: conf_list = [0] text = ''.join(char_list) if self.reverse: # for arabic rec text = self.pred_reverse(text) result_list.append((text, np.mean(conf_list).tolist())) return result_list def get_ignored_tokens(self): return [0] # for ctc blank class CTCLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(CTCLabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, tuple) or isinstance(preds, list): preds = preds[-1] if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True) if label is None: return text label = self.decode(label) return text, label def add_special_char(self, dict_character): dict_character = ['blank'] + dict_character return dict_character class DistillationCTCLabelDecode(CTCLabelDecode): """ Convert Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, model_name=["student"], key=None, multi_head=False, **kwargs): super(DistillationCTCLabelDecode, self).__init__(character_dict_path, use_space_char) if not isinstance(model_name, list): model_name = [model_name] self.model_name = model_name self.key = key self.multi_head = multi_head def __call__(self, preds, label=None, *args, **kwargs): output = dict() for name in self.model_name: pred = preds[name] if self.key is not None: pred = pred[self.key] if self.multi_head and isinstance(pred, dict): pred = pred['ctc'] output[name] = super().__call__(pred, label=label, *args, **kwargs) return output class AttnLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(AttnLabelDecode, self).__init__(character_dict_path, use_space_char) def add_special_char(self, dict_character): self.beg_str = "sos" self.end_str = "eos" dict_character = dict_character dict_character = [self.beg_str] + dict_character + [self.end_str] return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() [beg_idx, end_idx] = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if int(text_index[batch_idx][idx]) == int(end_idx): break if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) return result_list def __call__(self, preds, label=None, *args, **kwargs): """ text = self.decode(text) if label is None: return text else: label = self.decode(label, is_remove_duplicate=False) return text, label """ if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label, is_remove_duplicate=False) return text, label def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx class RFLLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(RFLLabelDecode, self).__init__(character_dict_path, use_space_char) def add_special_char(self, dict_character): self.beg_str = "sos" self.end_str = "eos" dict_character = dict_character dict_character = [self.beg_str] + dict_character + [self.end_str] return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() [beg_idx, end_idx] = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if int(text_index[batch_idx][idx]) == int(end_idx): break if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) return result_list def __call__(self, preds, label=None, *args, **kwargs): if len(preds) == 2: cnt_pred, preds = preds if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label, is_remove_duplicate=False) return text, label else: cnt_pred = preds if isinstance(cnt_pred, paddle.Tensor): cnt_pred = cnt_pred.numpy() cnt_length = [] for lens in cnt_pred: length = round(np.sum(lens)) cnt_length.append(length) if label is None: return cnt_length label = self.decode(label, is_remove_duplicate=False) length = [len(res[0]) for res in label] return cnt_length, length def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx class SEEDLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(SEEDLabelDecode, self).__init__(character_dict_path, use_space_char) def add_special_char(self, dict_character): self.padding_str = "padding" self.end_str = "eos" self.unknown = "unknown" dict_character = dict_character + [ self.end_str, self.padding_str, self.unknown ] return dict_character def get_ignored_tokens(self): end_idx = self.get_beg_end_flag_idx("eos") return [end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "sos": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "eos": idx = np.array(self.dict[self.end_str]) else: assert False, "unsupport type %s in get_beg_end_flag_idx" % beg_or_end return idx def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] [end_idx] = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if int(text_index[batch_idx][idx]) == int(end_idx): break if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) return result_list def __call__(self, preds, label=None, *args, **kwargs): """ text = self.decode(text) if label is None: return text else: label = self.decode(label, is_remove_duplicate=False) return text, label """ preds_idx = preds["rec_pred"] if isinstance(preds_idx, paddle.Tensor): preds_idx = preds_idx.numpy() if "rec_pred_scores" in preds: preds_idx = preds["rec_pred"] preds_prob = preds["rec_pred_scores"] else: preds_idx = preds["rec_pred"].argmax(axis=2) preds_prob = preds["rec_pred"].max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label, is_remove_duplicate=False) return text, label class SRNLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(SRNLabelDecode, self).__init__(character_dict_path, use_space_char) self.max_text_length = kwargs.get('max_text_length', 25) def __call__(self, preds, label=None, *args, **kwargs): pred = preds['predict'] char_num = len(self.character_str) + 2 if isinstance(pred, paddle.Tensor): pred = pred.numpy() pred = np.reshape(pred, [-1, char_num]) preds_idx = np.argmax(pred, axis=1) preds_prob = np.max(pred, axis=1) preds_idx = np.reshape(preds_idx, [-1, self.max_text_length]) preds_prob = np.reshape(preds_prob, [-1, self.max_text_length]) text = self.decode(preds_idx, preds_prob) if label is None: text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) return text label = self.decode(label) return text, label def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) return result_list def add_special_char(self, dict_character): dict_character = dict_character + [self.beg_str, self.end_str] return dict_character def get_ignored_tokens(self): beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") return [beg_idx, end_idx] def get_beg_end_flag_idx(self, beg_or_end): if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "unsupport type %s in get_beg_end_flag_idx" \ % beg_or_end return idx class SARLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(SARLabelDecode, self).__init__(character_dict_path, use_space_char) self.rm_symbol = kwargs.get('rm_symbol', False) def add_special_char(self, dict_character): beg_end_str = "" unknown_str = "" padding_str = "" dict_character = dict_character + [unknown_str] self.unknown_idx = len(dict_character) - 1 dict_character = dict_character + [beg_end_str] self.start_idx = len(dict_character) - 1 self.end_idx = len(dict_character) - 1 dict_character = dict_character + [padding_str] self.padding_idx = len(dict_character) - 1 return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if int(text_index[batch_idx][idx]) == int(self.end_idx): if text_prob is None and idx == 0: continue else: break if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) if self.rm_symbol: comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]') text = text.lower() text = comp.sub('', text) result_list.append((text, np.mean(conf_list).tolist())) return result_list def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label, is_remove_duplicate=False) return text, label def get_ignored_tokens(self): return [self.padding_idx] class DistillationSARLabelDecode(SARLabelDecode): """ Convert Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, model_name=["student"], key=None, multi_head=False, **kwargs): super(DistillationSARLabelDecode, self).__init__(character_dict_path, use_space_char) if not isinstance(model_name, list): model_name = [model_name] self.model_name = model_name self.key = key self.multi_head = multi_head def __call__(self, preds, label=None, *args, **kwargs): output = dict() for name in self.model_name: pred = preds[name] if self.key is not None: pred = pred[self.key] if self.multi_head and isinstance(pred, dict): pred = pred['sar'] output[name] = super().__call__(pred, label=label, *args, **kwargs) return output class PRENLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(PRENLabelDecode, self).__init__(character_dict_path, use_space_char) def add_special_char(self, dict_character): padding_str = '' # 0 end_str = '' # 1 unknown_str = '' # 2 dict_character = [padding_str, end_str, unknown_str] + dict_character self.padding_idx = 0 self.end_idx = 1 self.unknown_idx = 2 return dict_character def decode(self, text_index, text_prob=None): """ convert text-index into text-label. """ result_list = [] batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] == self.end_idx: break if text_index[batch_idx][idx] in \ [self.padding_idx, self.unknown_idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) if len(text) > 0: result_list.append((text, np.mean(conf_list).tolist())) else: # here confidence of empty recog result is 1 result_list.append(('', 1)) return result_list def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob) if label is None: return text label = self.decode(label) return text, label class NRTRLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=True, **kwargs): super(NRTRLabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, label=None, *args, **kwargs): if len(preds) == 2: preds_id = preds[0] preds_prob = preds[1] if isinstance(preds_id, paddle.Tensor): preds_id = preds_id.numpy() if isinstance(preds_prob, paddle.Tensor): preds_prob = preds_prob.numpy() if preds_id[0][0] == 2: preds_idx = preds_id[:, 1:] preds_prob = preds_prob[:, 1:] else: preds_idx = preds_id text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label[:, 1:]) else: if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label[:, 1:]) return text, label def add_special_char(self, dict_character): dict_character = ['blank', '', '', ''] + dict_character return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): try: char_idx = self.character[int(text_index[batch_idx][idx])] except: continue if char_idx == '': # end break char_list.append(char_idx) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text.lower(), np.mean(conf_list).tolist())) return result_list class ViTSTRLabelDecode(NRTRLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(ViTSTRLabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, paddle.Tensor): preds = preds[:, 1:].numpy() else: preds = preds[:, 1:] preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label[:, 1:]) return text, label def add_special_char(self, dict_character): dict_character = ['', ''] + dict_character return dict_character class ABINetLabelDecode(NRTRLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(ABINetLabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, dict): preds = preds['align'][-1].numpy() elif isinstance(preds, paddle.Tensor): preds = preds.numpy() else: preds = preds preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False) if label is None: return text label = self.decode(label) return text, label def add_special_char(self, dict_character): dict_character = [''] + dict_character return dict_character class SPINLabelDecode(AttnLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(SPINLabelDecode, self).__init__(character_dict_path, use_space_char) def add_special_char(self, dict_character): self.beg_str = "sos" self.end_str = "eos" dict_character = dict_character dict_character = [self.beg_str] + [self.end_str] + dict_character return dict_character class VLLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__(self, character_dict_path=None, use_space_char=False, **kwargs): super(VLLabelDecode, self).__init__(character_dict_path, use_space_char) self.max_text_length = kwargs.get('max_text_length', 25) self.nclass = len(self.character) + 1 self.character = self.character[10:] + self.character[ 1:10] + [self.character[0]] def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): selection = np.ones(len(text_index[batch_idx]), dtype=bool) if is_remove_duplicate: selection[1:] = text_index[batch_idx][1:] != text_index[ batch_idx][:-1] for ignored_token in ignored_tokens: selection &= text_index[batch_idx] != ignored_token char_list = [ self.character[text_id - 1] for text_id in text_index[batch_idx][selection] ] if text_prob is not None: conf_list = text_prob[batch_idx][selection] else: conf_list = [1] * len(selection) if len(conf_list) == 0: conf_list = [0] text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) return result_list def __call__(self, preds, label=None, length=None, *args, **kwargs): if len(preds) == 2: # eval mode text_pre, x = preds b = text_pre.shape[1] lenText = self.max_text_length nsteps = self.max_text_length if not isinstance(text_pre, paddle.Tensor): text_pre = paddle.to_tensor(text_pre, dtype='float32') out_res = paddle.zeros( shape=[lenText, b, self.nclass], dtype=x.dtype) out_length = paddle.zeros(shape=[b], dtype=x.dtype) now_step = 0 for _ in range(nsteps): if 0 in out_length and now_step < nsteps: tmp_result = text_pre[now_step, :, :] out_res[now_step] = tmp_result tmp_result = tmp_result.topk(1)[1].squeeze(axis=1) for j in range(b): if out_length[j] == 0 and tmp_result[j] == 0: out_length[j] = now_step + 1 now_step += 1 for j in range(0, b): if int(out_length[j]) == 0: out_length[j] = nsteps start = 0 output = paddle.zeros( shape=[int(out_length.sum()), self.nclass], dtype=x.dtype) for i in range(0, b): cur_length = int(out_length[i]) output[start:start + cur_length] = out_res[0:cur_length, i, :] start += cur_length net_out = output length = out_length else: # train mode net_out = preds[0] length = length net_out = paddle.concat([t[:l] for t, l in zip(net_out, length)]) text = [] if not isinstance(net_out, paddle.Tensor): net_out = paddle.to_tensor(net_out, dtype='float32') net_out = F.softmax(net_out, axis=1) for i in range(0, length.shape[0]): preds_idx = net_out[int(length[:i].sum()):int(length[:i].sum( ) + length[i])].topk(1)[1][:, 0].tolist() preds_text = ''.join([ self.character[idx - 1] if idx > 0 and idx <= len(self.character) else '' for idx in preds_idx ]) preds_prob = net_out[int(length[:i].sum()):int(length[:i].sum( ) + length[i])].topk(1)[0][:, 0] preds_prob = paddle.exp( paddle.log(preds_prob).sum() / (preds_prob.shape[0] + 1e-6)) text.append((preds_text, preds_prob.numpy()[0])) if label is None: return text label = self.decode(label) return text, label